Selamat Datang di Blog ku, Enjoy in here | be a best person with physics | Jangan Lupa Isiin Buku Tamu nya yaak ^_^
Blogger Bertuah
Google PageRank Checker Powered by  MyPagerank.Net

Kamis, 06 Januari 2011

Warna Awan



Kenapa warna awan berubah-ubah, dan nggak sama? Apa sih yang menentukan warna awan?

Warna awan sangat dipengaruhi oleh Matahari, bisa juga dipengaruhi oleh warna awan sekitarnya. Lha koq?

n1186039176_365169_3894.jpgSebenarnya, semakin tebal awan, semakin gelap warnanya. Bila sinar Matahari menimpa awan, air di dalam awan dapat memantulkan sinar Matahari atau menyerapnya. Efeknya akan menipiskan atau mencairkan kekuatan cahaya Matahari yang menembus awan.

Warna asli awan adalah putih. Jadi, jika panjang gelombang sinar tampak dari Matahari, di dalam spektrum sinar Merah hingga Lembayung, sinar tersebut akan terpencar secara merata, menghasilkan sinar putih. Jadi, jika awan tidak menutupi Matahari, warnanya akan putih.

Nah, warna awan bisa berbeda-beda karena kadang-kadang partikel-partikel di dalam atmosfer dan sudut lintasan yang dilalui sinar Matahari dapat menghasilkan penyebaran panjang gelombang, sehingga partikel-partikel warna tertentu, misalnya warna emas, menonjol di awan. Jika warna awan biru, berarti warna biru yang paling banyak dihamburkan.

READ MORE - Warna Awan
Free Template Blogger collection template Hot Deals SEO

Keunikan Bumi dari Planet Lain



Apakah Bumi seperti planet-planet lain?

Tidak. Jupiter, Saturnus, Uranus, dan Neptunus adalah bola-bola besar yang hamper seluruhnya tersusun dari gas. Planet-planet itu tidak mempunyai kerak yang padat dan berbatu seperti bumi.

Merkurius, Venus, dan Mars padat di luarnya seperti Bumi, tapi tentu saja kita tidak bisa bertahan hidup disana. Malam hari di Merkurius sangat dingin dan lama, sedangkan siang harinya panas dan lama.

Venus panas menghanguskan. Mars sangat dingin. Tak satu pun dari planet-planet ini yang mempunyai Oksigen untuk bernapas atau air untuk minum. (Pada planet-planet yang lebih panas, air cepat menguap dan berubah menjadi gas. Pada planet-planet yang lebih dingin, air cepat membeku).

Bumi sangat ideal sebagai tempat tinggal karena tidak terlalu panas atau dingin. Bumi menjadi satu-satunya planet, yang kita tahu, memiliki makhluk hidup.

READ MORE - Keunikan Bumi dari Planet Lain
Free Template Blogger collection template Hot Deals SEO

Hal-Hal yg mengagumkan dari Bumi



Masih banyak hal-hal baru yang ditemukan setiap hari. Bahkan, sebagian besar lautan bahkan belum digali,dengan ratusan spesies baru, menawarkan hutan hujan baru binatang dan tanaman sesering kita dapat menjelajahi mereka. Bumi yang selalu berubah, pergeseran, dan exposing baru yang mengherankan. Butuh waktu bertahun-tahun dan banyak pikiran besar untuk menyelesaikan masalah yang lolos ke gunung yang luas bentangan dari luar ruang. Berikut adalah sepuluh fakta menakjubkan tentang rumah kami yang Anda mungkin tidak menyadarinya.

Dust in the Wind
Ahli dari USGS menyatakan bahwa sekitar 1.000 ton ruang bawah reruntuhan hujan di Bumi setiap tahun.

Hot, Hot, Hot
Kebanyakan orang percaya bahwa Death Valley, California, Amerika Serikat adalah tempat yang paling panas di Bumi. Tetapi ada tempat yang tercatat memiliki suhu paling panas adalah dari Azizia di Libya merekam suhu 136 derajat Fahrenheit (57,8 Celcius) pada 13 September 1922. Sedangkan di Death Valley, suhu pernah tercatat tertinggi hingga 134 Fahrenheit pada 10 Juli 1913.

Shaky Ground
Gempa bumi dapat merusak dan banyak menyebabkan kematian dalam setahun. However, the Earth releases about 1 million a year, almost all are never even registered.

Deep water
Deep water terdalam di dunia adalah di bekas USSR dan itu adalah Danau Baikal. Memiliki panjang 400 mil, dengan lebar sekitar 30, tetapi dengan kedalaman sekitar satu mil: 5371 kaki bawah. Hal ini cukup mendalam, sehingga danau ini dikategorikan sebagai 5 danau terbesar didunia.

Pegunungan
Pegunungan Andes di Amerika Selatan adalah 4.525 mil panjang dan menempati ranking sebagai pegunungan terpanjang didunia. Kedua Longest: The Rockies; Ketiga: Himalaya; Keempat: The Great Dividing Range di Australia; Kelima: Trans-Antartika Mountains. Untuk setiap 980 kaki Anda naik sebuah gunung, suhu tetes 3-1/2 derajat.

Lake and Sea
Terbesar di pedalaman laut (kadang-kadang disebut danau) adalah Laut Kaspia yang berada di perbatasan Iran dan Rusia.

Salty Oceans
Jika Anda dapat menguapkan semua air dari semua lautan dan menyebarkan garam atas segala akibat tanah di Bumi, you would have a five hundred-foot layer coating everything.

The Big Blue Marble
Bumi ini, dalam kenyataannya, tidak benar-benar bulat. It is called an oblate spheroid meaning it’s slightly flattened on the top and bottom poles.

Desert
Percaya atau tidak, sebagian besar gurun pasir dibumi tidak seluruhnya terdiri dari pasir. Banyak, sekitar 85% dari mereka, adalah batu-batu dan kerikil. Gurun terbesar yaitu Sahara, mengisi sekitar 1/3 dari Afrika (dan terus berkembang) yang akan mengisi hampir benua Amerika.

The Atmospher
Banyak lapisan yang ada dibumi kita termasuk Mesosfer, ionosfir, exosphere, dan thermosphere, tetapi yang troposphere, yang paling dekat dengan planet bumi, yang mendukung kehidupan kita dan, dalam kenyataannya, di thinnest hanya sekitar 10 mil tingginya.


READ MORE - Hal-Hal yg mengagumkan dari Bumi
Free Template Blogger collection template Hot Deals SEO

Berapakah Umur Alam Semesta?



Banyak cara yang berbeda satu sama lain digunakan untuk menjelaskan berapa umur semesta, dan walaupun berbagai metodologi itu dilakukan secara terpisah, tetapi memberikan gambaran yang berkesesuaian satu sama lain untuk menjelaskan umur semesta ini secara obyektif. Demikian dibawah ini akan diperkenalkan beberapa jalinan metode tersebut.

Umur Alam Semesta Yang Mengembang
Jarak galaksi dapat ditentukan dari ukuran yang tampak atau kecerlangannya. Galaksi yang tampak lebih kecil dan lebih redup dari galaksi lain yang serupa, berarti berjarak lebih jauh. Jarak juga bisa ditentukan menggunakan penanda jarak yang lain, seperti beberapa jenis bintang. Selain jarak, laju galaksi bergerak bisa dtentukan dengan pengetahuan spektrum-nya. (Spektrum cahaya dari galaksi adalah apabila kita memecah cahaya menjadi komponen warna-nya seperti pelangi). Dengan pengetahuan spektrum cahaya bisa memberikan identitas obyek apa yang diamati, maupun bagaimana obyek diamati bergerak, karena setiap spektrum obyek yang berbeda memberikan pola yang unik.

Christian Doppler di tahun 1842 menunjukkan bahwa ketika sumber cahaya bergerak, gerakan tersebut menyebabkan mengubah gelombang, mengubah warna yang dilihat pada spektrum. Efek ini dikenal sebagai efek Doppler. Pengetahuan tentang efek Doppler ini memberitahu kita apakah suatu sumber cahaya mendekati atau menjauhi kita. Dari sini kita bisa mengetahui bagaimana benda-benda langit bergerak terhadap kita sebagai pengamat di Bumi, dan berapa cepat pergerakannya.

Di tahun 1920-an, Edwin Hubble menemukan bahwa galaksi – galaksi bergerak terhadap kita dengan pola tertentu. Semakin jauh galaksi dari kita, semakin cepat pergerakannya. Pola ini yang dikenal sebagai “alam semesta mengembang”, karena pola perilaku ini terlihat pada semua arah di langit. Jadi bisa saja dianggap bahwa semua galaksi bergerak menjauhi galaksi Bima Sakti, tetapi tidak bisa dikatakan begitu saja bahwa Bima Sakti sebagai pusat semesta, karena pola yang sama bisa saja teramati oleh pengamat yang berada di galaksi yang lain. Jadi tidak serta merta disimpulkan dari pekerjaan Hubble bahwa kita berada pada pusat semesta atau kita berada pada posisi yang istimewa dalam semesta.

Kembali pada pengukuran pergeseran cahaya yang teramati, ahli astronomi mencoba mengukur berapa lama pengembangan telah terjadi. Jika diasumsikan bahwa semua galaksi berangkat dari titik awal yang sama, maka bisa dideduksi, berapa jauh yang telah ditempuh suatu galaksi dan berapa kecepatan tempuhnya, kemudian membagi jarak terhadap laju. Dengan menambahkan faktor – faktor fisis yang realistis seperti adanya pengaruh gravitasi, atau adanya inflasi alam semesta, umur semesta diperoleh antara 12 sampai 14 milyar tahun.

Umur Bintang Paling Tua
Bagaimana bintang bisa menyala? Bagaimana menentukan umurnya? Berapa lama bintang dapat menyala? Bintang (termasuk Matahari) dapat bersinar karena adanya proses termonuklir di dalamnya, yang berfungsi sebagai generator pembangkit energi, akibat perubahan hidrogen menjadi helium; akibat panas dan tekanan yang sangat intens dalam inti bintang, inti hidrogen ber-fusi menjadi inti helium dan energi yang terpancarkan. Proses fisis ini bisa digunakan untuk mengukur umur bintang.

Fisika nuklir bisa menjelaskan berapa banyak energi yang dihasilkan dari fusi setiap atom hidrogen. Diketahui berapa banyak hidrogen panas dalam inti bintang, dan berapa cepat bintang menggunakan energinya untuk bersinar. Dengan demikian bisa dihitung berapa lama bintang bersinar sebelum kehabisan seluruh bahan bakarnya. Jika bintang telah kehabisan hidrogen di intinya, bintang berubah menjadi ‘raksasa merah’. Ketika kita menemukan adanya bintang raksasa tersebut, bisa ditentukan massa awalnya, tenaga awalnya, dan kala hidupnya dapat ditentukan. Demikian setelah diukur berbagai bintang yang telah tua tersebut, diperoleh dari metode ini umur semesta berkisar antara 10 – 15 milyar tahun.

Umur Cahaya Dari Galaksi Terjauh
Sebagaimana yang telah diungkap tentang jarak dalam ‘tahun cahaya’, pengamatan memberikan informasi tentang galaksi yang sangat jauh, sehingga yang cahaya dikirimkan oleh galaksi tersebut butuh milyaran tahun untuk mencapai pengamat. Dari hal tersebut, sepertinya kita sedang menggunakan mesin waktu, ketika kita mengamati langit, kita mengamati peristiwa yang telah terjadi di waktu yang telah berlalu. Pengamatan dari Hubble Space Telescope memberikan jarak terjauh galaksi yang teramati mencapai 10 milyar tahun cahaya, dengan demikian paling tidak semesta kita ini telah berumur 10 milyar tahun.

Umur Komposisi Kimia
Setelah ledakan besar awal (big bang), semesta tersusun dari elemen – elemen paling sederhana, yaitu hidrogen dan helium. Galaksi yang sangat-sangat jauh merupakan bukti bahwa hal ini memang demikian adanya, karena memiliki komposisi hidrogen dan helium yang jauh lebih besar. Komposisi kimia yang lebih kompleks dari hidrogen dan helium terbentuk kemudian akibat reaksi nuklir dalam inti bintang, atau ketika bintang yang sangat masif berakhir nasibnya dalam ledakan besar (supernova). Di dalam supernova yang teramati, terdapat elemen kimia yang terbentuk setelah 10-20 milyar tahun.

Paling tidak ada empat metode yang saling independen dipergunakan untuk menentukan umur alam semesta, kendati tidak tepat sama, tetapi paling tidak menunjukkan adanya kesesuaian, umur semesta sudah lebih dari 10 milyar tahun. Dan semua astronom sependapat dan berkeyakinan, bahwa semesta, semua galaksi, bintang-bintang benar-benar sudah tua dan telah tercipta di suatu masa yang sangat lampau.

READ MORE - Berapakah Umur Alam Semesta?
Free Template Blogger collection template Hot Deals SEO

Cara Menentukan Usia Fosil



Kata fosil diambil dari bahasa latin fossa yang artinya galian. Fosil adalah sisa-sisa dari mahluk hidup di jaman lampau yang telah membatu atau terurai menjadi mineral-mineral.

http://upload.wikimedia.org/wikipedia/en/thumb/1/1a/Priscacara-liops.jpg/200px-Priscacara-liops.jpg http://www.wbur.org/special/antarctica/photogallery/fossil/images/lg_fossil_page.jpg

Secara garis besar fosil dapat dibedakan menjadi dua kategori besar :

  • Sisa mahluk hidup itu sendiri
  • Sisa-sisa kegiatan dari mahluk hidup tersebut seperti perkakas bahkan jejak yang terekam pada batuan

Kita sering mendapatkan informasi dari berbagai media, bahwa suatu fosil bisa diperkirakan semasa hidupnya dia ada di jaman Mesozoic periode Jurassic misalnya. Nah bagaimana para palaeontologis bisa memprediksi umur sebuah fosil hanya dari sebongkah fosil ?

http://www.bobainsworth.com/fossil/geological_time.gifUsia fosil bisa ditentukan dengan metode peluruhan radioaktif. Unsur yang sering digunakan untuk kegiatan ini adalah atom karbon-14 (C-14). Setiap mahluk hidup (manusia, binatang dan tumbuhan) dan benda mati di Bumi ini mengandung karbon-14.

C-14 mempunyai waktu paruh 5.730 tahun, maksudnya jika dalam tubuh mahluk hidup terdapat 1000 atom C-14, 5.730 tahun setelah mahluk hidup itu mati, jumlah atom C-14 akan berkurang setengahnya menjadi 500. 5.730 tahun berikutnya atau 11.460 tahun kemudian jumlahnya tersisa 250 dan seterusnya.

Dengan mengukur jumlah C-14 yang terkandung pada fosil, umur fosil bisa ditentukan. Untuk rekaman sepanjang sejarah, metode ini cukup baik dengan penyimpangan akurasi sekitar beberapa ratus tahun. Untuk penentuan usia fosil jaman prasejarah, digunakan unsur lain seperti rubidium-87 yang waktu paruhnya 50 juta tahun atau samaryum-147 yang mempunyai waktu paruh selama 100 juta tahun

READ MORE - Cara Menentukan Usia Fosil
Free Template Blogger collection template Hot Deals SEO

METODA “PENENTUAN UMUR” DAN UMUR BUMI YANG SEBENARNYA



Kebohongan Teori Umur Bumi Jutaan Tahun

METODA “PENENTUAN UMUR” DAN UMUR BUMI YANG SEBENARNYA
(David J. Stewart)

Banyak fosil yang membuktikan ketidakbenaran teori evolusi disembunyikan oleh para evolusionis (pendukung teori evolusi) dan bahkan dipalsukan untuk kepentingan mereka. Hal yang paling menarik dari skenario para evolusionis adalah umur dari fosil-fosil ini.

Evolusionis menyatakan bahwa Archaeopteryx hidup 150 juta tahun yang lalu, manusia Lucy 3 juta tahun lalu, dan reptil pertama hidup 250 juta tahun yang lalu. Akan tetapi, penelitian yang dilakukan terhadap fosil-fosil ini menunjukkan kenyataan bahwa umur yang disebutkan memperlihatkan bias dan interpertasi yang menipu.

Kenyataannya, semua angka-angka jutaan tahun yang diberikan para evolusionis terhadap umur fosil ini sama sekali tidak bisa dipertanggungjawabkan. Metoda untuk menentukan umur fosil ini sangat spekulatif. Lebih jauh, metoda “penentuan umur” yang lain tidak diterima oleh evolusionis, karena bisa membuktikan bahwa umur fosil ternyata jauh lebih muda.

Sebenarnya pertanyaannya adalah mengenai umur bumi, bukan hanya umur fosil. Evolusionis berpendapat bahwa umur bumi adalah 4,5 miliar tahun. Angka ini digunakan oleh berbagai media cetak dan elektronik, literatur sains dan sumber-sumber yang lain. Banyak orang percaya pada pendapat tersebut yang menyatakan bahwa bumi umurnya beberapa miliar tahun dan menerimanya tanpa pembuktian yang nyata.

Pendapat ini tetap bertahan tanpa adanya langkah nyata untuk membuktikan kebenarannya. Termasuk angka-angka perkiraan yang diberikan oleh para evolusionis terhadap umur fosil pada kenyataannya sangat meragukan.

Kemudian, apakah pentingnya mengetahui umur bumi sudah tua (4,5 miliar tahun) atau masih muda (ribuan tahun)?

Orang Kristen mula-mula teguh pada kepercayaan bahwa manusia ada di bumi sejak 5,000 – 6,000 tahun SM, menurut Alkitab Perjanjian Lama. Akan tetapi di bawah konsep evolusi, pemahaman umur bumi mulai berubah.

George de Buffon, salah satu pionir teori evolusi, pertama kali menyatakan bahwa umur bumi lebih tua dari 80 ribu tahun. Geologis James Hutton dan Charles Lyell menunjuk pada umur yang lebih tua lagi. Dengan berkembangnya teori evolusi, perkiraan umur bumi menjadi semakin tua. Hari ini para pendukung evolusi menerima bahwa umur bumi adalah 4,5 miliar tahun dan makhluk hidup pertama ada 3,5 miliar tahun lalu.

Teori evolusi

Apa alasan para evolusionis begitu memaksakan hal ini? Mengapa teori ini mencoba menaikkan umur bumi dari semenjak pertama teori evolusi dicetuskan?

Alasannya adalah : proses evolusi memerlukan waktu yang sangat lama untuk bisa terjadi. Klaim bahwa semua makhluk ada karena perkembangan secara bertahap dari satu sel makhluk hidup, tentu saja akan gagal dan tidak berarti apa-apa jika umur bumi masih muda – hanya beberapa ribu tahun lalu. Tetapi jika bisa dibuktikan bahwa umur bumi adalah beberapa miliar tahun, maka waktu yang diperlukan untuk terjadinya proses evolusi bisa dipenuhi menurut teori ini.

Stephen W. Hawking

Jadi latar belakang klaim bahwa umur bumi adalah 4,5 miliar tahun, semata-mata didasarkan pada keperluan teori evolusi. Dengan alasan yang sama, umur alam semesta diakui relatif lebih tua sesuai penetepan dari umur bumi sebelumnya. Stephen W. Hawking, seorang fisikawan moderen yang terkenal, tidak ragu-ragu untuk mengakui tujuan sebenarnya dari pemikiran para evolusionis. Hawking menjawab pertanyaan, “Mengapa Bing Bang terjadi sepuluh miliar tahun lalu?” dengan sebuah jawaban, “Waktu selama itu (miliaran tahun) diperlukan untuk proses evolusi supaya bisa menghasilkan sebuah makhluk yang cerdas.”

Kalau begitu, apakah yang benar-benar dibutuhkan oleh teori evolusi? Apakah bumi memang setua yang di klaim oleh para evolusionis?

Pada penjelasan berikut, kita akan melihat jawaban terhadap pertanyaan ini. Tetapi hal pertama yang harus dilakukan adalah mempertanyakan keabsahan metoda yang digunakan oleh para evolusionis untuk membuktikan umur bumi dan fosil dari organisme makhluk hidup. Kemudian kita akan melihat metoda yang lain dalam menentukan umur, yang tidak diterima bahkan diabaikan oleh para evolusionis, hanya karena bisa membuktikan umur yang lebih muda.

TES RADIOMETRIK

Dewasa ini ada dua macam tes untuk menentukan umur bumi.


Pertama berdasarkan observasi (pengamatan) terhadap kejadian alam yang ada di muka bumi. Jika diamati bahwa beberapa peristiwa geologis terjadi pada masa tertentu, maka bisa diasumsikan dengan mempergunakan data ini, kejadian yang sama telah terjadi dalam kurun waktu yang sama di masa lalu.

Mengacu pada prinsip ini, bisa perkirakan umur bumi. Sebagai contoh, diasumsikan rasio konsentrasi garam di laut naik 100 ton dalam sebulan. Berdasarkan rasio ini, metoda penentuan umur dilakukan dengan cara: Memperkirakan jumlah garam yang ada di semua lautan, selanjutnya dibagi dengan jumlah rasio peningkatan yang sudah ditentukan sebelumnya. Angka yang diperoleh akan mengindikasikan jumlah bulan yang dilewati sampai sekarang, dari sejak pertama kali adanya lautan (dengan asumsi tidak ada kandungan garam di laut mula-mula).

Yang kedua adalah tes Radiometrik. Test ini ditemukan awal abad 20 dan menjadi sangat populer. Teknik test Radiometrik terletak pada prinsip bahwa “atom tidak stabil” di material radioaktif akan berubah menjadi “atom stabil” dalam satu interval waktu tertentu. Kenyataan bahwa perubahan ini terjadi dengan jumlah yang sudah dipastikan dan juga dalam periode waktu yang tertentu, membuat timbulnya gagasan untuk mempergunakan data ini sebagai penentu dari umur fosil dan umur bumi.

Test Uranium adalah yang pertama kali digunakan, tetapi kemudian tidak dipakai lagi. Prinsip dari test ini adalah perubahan uranium menjadi timah. Uranium berubah menjadi atom thorium saat memancarkan radiasinya. Thorium adalah sebuah elemen radioaktif, berubah menjadi protactinium setelah beberapa waktu tertentu. Setelah tiga belas perubahan tambahan, uranium pada akhirnya berubah menjadi timah yang merupakan elemen stabil.

Waktu yang dibutuhkan oleh elemen radioaktif untuk berubah dari setengah masanya menjadi elemen yang lain, disebut setengah-umur dari elemen ini. Setengah-umur dari uranium-238 adalah 4,5 miliar tahun. Artinya 100 gram uranium yang kita miliki hari ini, akan menjadi 50 gram uranium-238 dan 50 gram timah-206 setelah 4,5 miliar tahun kemudian. Dan setelah 4,5 miliar tahun berikutnya, ada tersisa seperempat dari jumlah uranium yang kita miliki mula-mula. Reaksi ini akan berlanjut sampai uranium itu habis.

Tes radiometrik untuk mengukur batuan vulkanik

Tes radiometrik digunakan untuk menghitung umur batuan sesuai dengan prinsip setengah-umur, yaitu: ada sejumlah elemen radioaktif di batuan vulkanik di bumi. Kandungan radio aktif di batuan ini secara alami hilang dan berubah menjadi bentuk yang stabil. Dengan melihat proses ini, menghitung jumlah radioaktif dan material stabil, bisa ditentukan berapa banyak material radioaktif yang berubah ke dalam bentuk stabil di dalam rentang waktu tertentu. Sehingga umur batuan ini adalah dua kali dari jumlah material radioaktif berubah menjadi setengah-umur.

Umur bumi juga ditentukan dengan metoda yang sama. Batuan yang dipakai untuk memperkirakan umur bumi sama dengan dengan meteor atau tanah di bulan, yang diasumsikan diciptakan pada waktu yang sama dengan bumi. Sampel dari batuan ini diasumsikan sebagai batuan yang tertua, dan digunakan untuk menentukan umur bumi. Sesuai dengan data ini, umur bumi adalah 4,6 miliar tahun.

Ada sejumlah test radiometrik mempergunakan prinsip ini : “material radiometer berubah terhadap waktu.” Bahan dari berbagai material setengah-umur dipergunakan untuk membuat perkiraan historis dari berbagai henis batuan. Selain mempergunakan perubahan uranium-timah, digunakan teknik perubahan yang lain seperti rubidium-strontium dan potassium-argon juga digunakan. Ada juga metoda yang lebih baru seperti jam-fisi, thermoluminescence, neodymium-samarium. Kebanyakan dari cara-cara itu sebelumnya digunakan untuk menentukan umur.

Banyak orang berpikir bahwa metoda penentuan umur ini menunjukkan bahwa segi ilmiahnya tepat dan sesuai dengan hukum-hukumnya. Tetapi kenyataannya sangat banyak kritik serius terhadap penentuan umur mempergunakan metoda ini.

Tes radiometrik ini didasarkan pada beberapa asumsi, walaupun tidak ada landasan yang bisa dipegang. Pertama, supaya bisa mempercayai tes ini; harus dipahami sungguh-sungguh bahwa tidak ada atom yang stabil di batuan mula-mula. Contohnya, sebuah tes uranium yang bisa dipertanggungjawabkan hanya bisa dibuat jika tidak ada timah di batuan itu. Jika sebelumnya batuan itu sudah memiliki kandungan timah, maka umurnya akan diperkirakan jauh lebih tua. Dan tidak mungkin bisa ditemukan apakah batuan mula-mula sudah memiliki kandungan timah atau tidak.

Hal kedua yang lebih penting adalah, menentukan lebih dahulu bahwa batu yang akan diukur berada dalam sistem yang tertutup. Batuan ini harus terlindungi dari efek-efek kejadian eksternal.

Contoh terbaik dali jenis efek ini bisa ditemukan di penentuan umur dengan potassium-argon. Metoda penentuan umur ini mengukur jumlah potassium yang berubah menjadi argon dalam satu rentang waktu. Jadi kita berpikir bahwa umur batuan bisa ditentukan dari perubahan komposisi rasio potassium-argon yang dimilikinya. Tetapi ada satu hal penting: Udara yang kita hirup berisi gas argon dalam jumlah besar. Gas ini, saat bebas, akan masuk ke dalam batuan dan meningkatkan jumlah kandungan argon di dalamnya. Sehingga umur batuan akan diperkirakan jauh lebih tua dari kenyataannya.

Air di dalam tanah juga membuat masalah yang penting. Air menyerap berbagai mineral dan material radioaktif saat melewati kedalaman tanah. Kemudian para evolusionis memakai mineral yang ada di batuan ini untuk menentukan umurnya. Ini menyebabkan masalah penting dan tidak bisa diabaikan dalam menentukan umur batuan.

Supaya tepat dalam memperkirakan umur sebuah sampel, tiga fakta di bawah ini harus diperhatikan:
1. Jumlah material radioaktif yang dimiliki oleh batuan mula-mula
2. Jumlah atom stabil yang ada di batuan mula-mula
3. Gas eksternal yang masuk ke dalam batuan.

Tenyata sangat tidak mungkin mengetahui dengan tepat ketiga kenyataan yang ada di atas.

KASUS PULAU SURTSEY

Beberapa studi yang dilakukan para ilmuwan juga menyarankan bahwa test radiometrik yang digunakan untuk menentukan umur tidak tepat seperti yang diperkirakan. Satu contoh yang cukup berharga adalah penelitian yang dilakukan pada sebuah pulau yang muncul dari letusan gunung api bawah laut di dekat Iceland tahun 1970. Dengan berjalannya waktu, muncul berbagai makhluk hidup dan ekosistemnya di pulau Surtsey.

Pulau Surtsey Iceland dikatakan berumur ratusan juta tahun

Seorang peneliti pada tahun 1975 ingin membuat tes untuk menentukan umur pulau ini dengan mempergunakan teknik metoda potassium-argon. Umur pulau yang diperoleh adalah satu miliar tahun! Kenyataannya semua orang tahu bahwa pulau itu baru berumur beberapa tahun. Ternyata gas argon telah memasuki batuan saat pembentukan lava, dan mencapai jumlah yang besar yang mengakibatkan umur sampel batuan yang diambil menunjukkan beberapa ratus juta tahun lebih tua.

Ada beberapa contoh lain yang bisa diberikan:

- Aliran lava bawah tanah yang diketahui berumur 20 tahun, dengan test radiometrik dikatakan berumur 12-21 miliar tahun.

- Umur lava yang meletus di Hawaii pada tahun 1.800, dengan test potassium-argon dikatakan berumur 1-2,4 miliar tahun dan dengan metoda penentuan umur helium dikatakan berumur 140-670 miliar tahun.

- Umur danau garam Crater di Oahu Amerika, diperkirakan 92-147 juta tahun, 140-680 juta tahun, 930-1.580 juta tahun, 1.230-1.960 juta tahun, 1.290-2.050 juta tahun dan 1.260-1.900 juta tahun dari beberapa metoda tes rediometrik. Ini jelas menunjukkan ketidak-akuratannya

- Beberapa pohon di Auckland, New Zealand yang ada di lapisan lava, diperkirakan berumur 145-465 tahun. Padahal dengan mempergunakan tes Karbon-14, pohon yang sama diperkirakan hanya berumur beberapa ratus tahun saja.

Dalam banyak kondisi yang sama, diketahui bahwa test radiometrik memberikan hasil yang keliru sampai ribuan bahkan jutaan tahun, dan menimbulkan pertentangan yang keras di antara penggunanya sendiri.

Contoh yang lain adalah sampel batuan bulan yang dikumpulkan oleh NASA. Tes radiometrik menyatakan bahwa umur batuan itu antara 700 juta tahun sampai 28 miliar tahun. Ini membuktikan pengukuran umur dengan metoda itu tidak bisa dipertanggungjawabkan karena memberikan hasil dengan rentang waktu yang tidak masuk akal untuk batuan yang sama.

TEST KARBON-14

Karbon-14 sebenarnya termasuk jenis tes rediometrik. Tetapi ada karakteristik khusus yang membedakannya dari yang lain. Tes radiometerik yang lain hanya bisa digunakan untuk menentukan umur batuan vulkanik, sedangkan karbon-14 bisa digunakan untuk memperkirakan umur makhluk hidup, karena elemen radioaktif yang ditemukan di dalam makhluk hidup hanyalah karbon-14.

Tes karbon-14 untuk mengukur makhluk hidup

Bumi secara terus-menerus terpapar dengan hujan cahaya kosmik dari luar angkasa. Cahaya ini berbenturan dengan nitrogen-14 yang ada banyak di atmosfer dan berubah menjadi elemen radioaktif, karbon-14. Substansi baru yang dihasilkan dari kombinasi karbon-14 dan oksigen di atmosfer membuat karbon-140, yang merupakan jenis radioaktif yang lain.

Sebagaimana diketahui, tanaman mempergunakan CO2 (karbon dioksida), H2O (air) dan udara sebagai nutrisi. Beberapa molekul karbon dioksida ini diserap oleh tanaman di mana membuat molekulnya berisi kabon radioaktif, karbon-14. Tanaman mengumpulkan bahan radioaktif di dalamnya.

Beberapa organisme hidup makan tanaman. Beberapa makhluk hidup memakan makhluk yang lain atau makan tanaman. Mengikuti rantai makanan ini, karbon radioaktif yang dihisap makanan dari udara disalurkan ke tanaman yang lain. Sehingga setiap makhluk di bumi menghirup karbon-14 dalam jumlah yang sama yang ada di atmosfer.

Saat tanaman atau binatang mati, mereka tidak memperoleh karbon-14 karena tidak bisa makan lagi. Karena karbon-14 adalah bahan radioaktif, dia memiliki setengah-umur dan mulai berkurang jumlahnya sejalan dengan waktu. Jadi berdasarkan hal itu, dengan mengukur karbon-14 di dalam tubuh tiap-tiap makhluk, bisa digunakan untuk memperkirakan umur bumi.

Setengah-umur dari karbon-14 adalah mendekati 5.570 tahun, yang berarti setiap 5.570 tahun setengan dari jumlah karbon-14 yang ada di dalam makhluk hidup menjadi rusak. Contohnya, jika ada 10 gram karbon-14 di dalam tubuh makhluk hidup 5.570 tahun yang lalu, hari ini akan tinggal 5 gram. Karena karbon-14 memiliki perioda setengah-umur yang pendek, maka tidak bisa dingunakan untuk menentukan umur dari sampel yang diperkirakan memiliki umur sangat tua seperti yang dihasilkan oleh tes radiometrik. Diasumsikan bahwa tes karbon-14 memberikan hasil yang bisa dipertanggungjawabkan untuk meneliti sampel antara 10 ribu sampai 60 ribu tahun.

Seperti sudah disebutkan, tes karbon-14 memiliki tempat yang berbeda dari tes radiometrik yang lain, karena digunakan untuk menentukan umur makhluk hidup. Karena itulah, tes karbon-14 sekarang ini paling banyak digunakan dibandingkan teknik penentuan umur yang lain. Tetapi tetapi ada kelemahan tes karbon-14, seperti yang ditemukan pada tes radiometrik yang lain.

Satu hal yang paling penting dari kenyataan ini adalah, sangat besar kemungkinannya bahwa sampel yang sedang diukur umurnya, terpapar dengan gas eksternal. Interaksi dengan gas-gas yang lain ini sangat mungkin terjadi melalui air terkarbonasi atau bikarbonasi. Jika air alam yang berisi karbon-14 ini mengenai sampel yang diukur, maka elemen karbon-14 air tersebut akan masuk ke dalam sampel. Dengan kondisi ini, umur sampel akan menjadi lebih muda dibandingkan yang sebenarnya.

Kebalikannya bisa juga terjadi. Di bawah kondisi tertentu, jumlah karbon-14 yang ada di sampel dapat menguap keluar membentuk karbonat dan bikarbonat. Dalam kondisi ini, umur yang dihitung akan jauh lebih tua dari yang sebenarnya.

Pada kenyataannya ada banyak temuan yang nyata yang menunjukkan tes karbon-14 tidak tepat. Sampel dari makhluk yang masih hidup, dites dengan karbon-14, menunjukkan umurnya beberapa ribu tahun. Sedangkan sampel dari makhluk yang baru saja mati menunjukkan umur yang jauh lebih tua dari yang sebenarnya.

Diketahui bahwa tes karbon-14 yang dilakukan terhadap sampel yang telah diketahui umurnya, biasanya memberikan hasil yang salah. Contohnya:

- Tes karbon-14 yang dilakukan terhadap anjing laut yang baru saja mati, menunjukkan umur 1.300 tahun.

- Umur dari tiram yang masih hidup adalah 2.300 tahun.

- Tanduk rusa yang sama menunjukkan umur 5.340, 9.310 dan 10.320 tahun.

- Kulit kayu pohon memberikan hasil 1.168 dan 2.200 tahun saat ketika diukur dalam waktu yang bersamaan.

- Di kota Jarmo Irak Utara orang-orang di sana hidup 500 tahun lalu, tetapi dengan tes karbon-14 umurnya adalah 6.000 tahun.

Kenyataanya, semua contoh ini mempelihatkan fakta bahwa tes karbon-14 juga tidak bisa diterima keakuratannya seperti halnya tes radiometrik yang lain.

INDEKS FOSIL

Sudah disebutkan bahwa SATU-SATUNYA tes radiometrik yang bisa digunakan untuk menentukan umur makhluk hidup hanyalah test karbon-14. Sebagai tambahannya, tes karbon-14 hanya bisa digunakan untuk menghitung sampel yang berumur kurang dari 60 ribu tahun. Tetapi fosil yang dipelajari oleh para ilmuwan evolusionis dan kita baca dari buku-bukunya, kadang-kadang berumur sampai jutaan tahun.

Jadi bagaimana mereka bisa menentukan umur fosil-fosil tersebut?

Jawaban terhadap pertanyaan ini akan terlihat menarik banyak orang yang menghadapi masalah ini untuk pertama kali, karena angka-angka yang diberikan oleh para evolusionis sangat mengesankan – seolah-olah mereka metoda penentuan umur yang benar-benar canggih. Akan tetapi metoda penetuan umur fosil yang berikutnya, yaitu metoda indeks, tidak disangka benar-benar mencengangkan.

Karena tes radiometrik tidak bisa digunakan terhadap fosil, maka untuk menentukan umur fosil para evolusionis melihat lapisan tanah di mana fosil itu ditemukan. Metoda penentuan umur fosil dengan melihat umur lapisan tanahnya ini dinamakan metoda “indeks fosil”.

Langkah pertamanya adalah menentukan umur setiap lapisan geologis dengan menggunakan metoda tes radiometrik. Kemudian fosil yang ditemukan di lapisan ini ditentukan umurnya berdasarkan umur lapisan geologisnya.

Pada kenyataannya ada sebuah masalah penting dalam hal ini yaitu : tes penentuan umur batuan hanya bisa dilakukan terhadap batuan vulkanik. Batuan jenis ini adalah batuan yang terbentuk dari lava yang keluar dari gunung berapi, membeku dan berubah bentuk. Jadi di dalam batuan ini sangat kecil kemungkinan bisa ditemukan fosil karena proses pembentukannya. Makhluk hidup yang masuk ke dalam lava panas akan habis terbakar.

Lapisan batuan bumi


Lebih jauh, hampir semua fosil berada di lapisan sedimen tanah atau tumpukan bebatuan. Lapisan sedimen tanah ini bertumpuk melalui perubahan permukaan bumi atau karena penyebab yang lain, menutupi permukaan makhluk yang mati ini. Organ lunak dari makhluk yang mati ini mulai membusuk dengan cepat. Hanya kerangka yang tersisa. Dan kerangka ini menjadi keras dan membatu, menyerap kalsium dan bahan-bahan lain dari sekitarnya. Akhirnya hanya tersisa kerangka yang membatu. Biasanya lapisan sedimen yang menutupi kerangka yang membatu ini terbuat dari batuan garam, bertambah tebal sesuai dengan berlalunya waktu. Saat lapisan ini semakin tebal, tekanan meningkat dan lapisan-lapisan sedimen berubah menjadi batu keras. Melalui proses ini, fosil dapat diawetkan untuk periode waktu yang lama.

Akan tetapi penentuan umur dengan tes radiometrik tidak bisa dilakukan terhadap batuan ini.

Secara singkat, ada sebuah pertentangan yang sangat mutlak yaitu: hanya batuan vulkanik yang satu-satunya mungkin dipakai untuk memperkirakan umurnya, tetapi hampir tidak pernah ditemukan ada fosil di dalamnya karena proses pembentukan batuan vulkanik tersebut.

Jadi kenyataannya, batuan yang berisi fosil tidak bisa ditentukan umurnya dengan metoda apa pun!

Untuk mengatasi masalah ini, metoda yang sangat menarik dipergunakan …

Di antara lapisan vulkanik, walaupun sangat jarang, kadang-kadang terdapat fosil di antaranya. Debu vulkanik atau material dingin yang terbentuk saat gunung berapi meletus, menutupi permukaan makhluk hidup itu dan melindungi kerangkanya. Pada kondisi ini, penentuan umur lapisan debu vulkanik mungkin untuk dilakukan. Umur dari lapisan debu sama dengan umur dari fosil yang ada. Umur debu vulkanik yang diperoleh dengan tes radiometrik sama dengan umur fosil.

Perkiraan umur fosil yang telindungi debu vulkanik itu sangat penting, karena berikutnya itu digunakan untuk menentukan umur fosil-fosil lain di lapisan yang sama.

Contohnya, fosil ikan Coelacanth pertama ditemukan di lapisan vulkanik, dihitung dengan tes radiometrik berumur 300 juta tahun (makhluk di bawah air juga bisa dipengaruhi oleh letusan vulkanik).

Fosil ikan Coelacanth dikatakan hidup 300 juta tahun lalu


Berdasarkan umur lapisan ini, umur ikan Coelacanth juga ditentukan berumur 300 juta tahun. Umur 300 juta tahun cocok untuk Coelacanth karena ikan ini diperkirakan merupakan bentuk perubahan ikan primitif. Jika ada fosil manusia ditemukan pada lapisan ini, maka para evolusionis akan berpikir bahwa mereka sudah membuat sebuah kesalahan, karena bagi mereka tidak mungkin menemukan fosil manusia di lapisan yang umurnya sangat tua menurut teori mereka.

Setelah penemuan besar ini, semua fosil yang ditemukan di lapisan yang sama dengan ikan Coelacanth ini juga diberi umur 300 tahun tanpa keraguan sedikit pun. Selanjutnya ikan Coelacanth menjadi “ideks fosil” (fosil penentu umur). Jadi ikan itu digunakan untuk menentukan umur batuan sedimen yang tidak mungkin diukur dengan tes radiometrik.

Jika kemudian ada ikan Coelacanth ditemukan pada lapisan tanah yang lain, maka lapisan itu langsung diasumsikan mempunyai umur yang sama dengan ikan ini. Indeks fosil ini juga biasa digunakan untuk menentukan umur fosil yang lain.

Akan tetapi apa yang terjadi berikutnya, ikan Coelacanth yang diperkirakan berumur 300 juta tahun dan telah digunakan sebagai indeks fosil sejak lama, ternyata ditemukan nelayan dalam keadaan hidup. Kemudian anggota spesies yang sama juga ditemukan dalam beberapa waktu selanjutnya mulai dari tahun 1938 sampai sekarang.

Ikan Coelacanth hidup banyak ditemukan sekarang ini

Ini membuktikan bahwa makhluk ini (ikan Coelacanth) bukanlah bentuk transisi ikan primitif, yang diperkirakan hidup 300 juta tahun lalu dan kemudian punah. Ikan ini adalah ikan yang masih hidup sampai sekarang. Berdasarkan kenyataan ini, maka semua penggunaan umur fosil yang mempergunakan ikan Coelacanth sebagai indeks fosil menjadi tidak berlaku lagi.

Kasus ini menunjukkan metode indeks fosil dangat lemah dan tidak bisa dipertanggung jawabkan. Para evolusionis yang menghitung umur batuan dengan tes radiometrik dan kemudian mempergunakan batuan ini sebagai indeks, ternyata terbukti tidak tepat. Ketika para evolusionis menemukan berbagai fosil dari makhluk yang sama di tempat-tempat yang berbeda di seluruh bumi, lapisan di tempat makhluk itu itu ditemukan juga diterima memiliki umur yang sama tuanya.

Masalah yang paling penting terletak pada kalkulasi spekulatif ini, yaitu asumsi adanya evolusi makhluk hidup. Karena, fosil yang diterima sebagai “indeks” ini diasumsikan hidup pada masa purba dan berubah menjadi spesies lain. Akan tetapi jika klaim terhadap terjadinya proses evolusi ini tidak diterima, maka semua perkiraan umur ini tidak ada artinya.

Alasan dari itu semua adalah, anggota dari spesies yang sama yang sebelumnya diterima sebagai indeks fosil yang diperkirakan hidup berjuta tahun lalu, ternyata ditemukan masih hidup sekarang ini tanpa ada perubahan bentuk. (seperti contoh ikan Coelacanth). Sebagai akibatnya, metoda indeks fosil ini tidak bisa dipergunakan lagi sebagai penentu umur fosil yang bisa dipertanggungjawabkan, dan juga berimbas pada pentuan semua fosil dengan umur yang sama di lapisan batuan yang sama.

Sebagai tambahan, telah terbukti bahwa test radiometrik yang digunakan untuk menentukan indeks fosil sama sekali tidak bisa dipercaya kebenarannya.

Indeks fosil ternyata digunakan untuk membagi lapisan bumi ke dalam bermacam kategori sesuai dengan lapisan geologisnya.

Contohnya, lapisan yang berisi sebagian besar invertebrata dikatakan berasal dari “periode cambrian”. Semua fosil yang ditemukan pada lapisan ini, juga dinamakan sebagai makhluk priode cambrian.

Setelah peride cambrian ini, sesuai dengan sudut pandang evolusionis, vertebrata dan mamalia bergabung menjadi satu. Jadi melalui asumsi ini disusun bukti dari perkembangan evolusi pada catatan fosil. Di asumsikan bahwa ada urutan perubahan bentuk dari invertebrata menjadi vertebrata, bentuk primitif dan menjadi moderen.

Akan tetapi, in bukanlah bukti yang sebenarnya untuk memastikan terjadinya proses evolusi, karena hanya asumsi yang diambil setelah teori evolusi diterima.

Sebuah contoh kecil akan memperjelas kondisi masalah ini:

Setiap orang yang menyelam dengan perlengkapan tabung udara di laut akan menjumpai berbagai makhluk hidup yang sama dengan makhluk yang dikatakan oleh para evolusionis berasal dari periode cambrian.

Dapat terlihat bahwa invertebrata dan organisme yang tidak termasuk jenis crustacea hidup di dasar laut pada saat yang sama sekarang ini. Kemudian fosil yang tergolong pada periode cambrian masih hidup dengan semua jenisnya sampai hari ini pada waktu yang sama. Padahal, para evolusionis mempergunakan fosil dari makhluk ini sebagai indeks fosil, menyatakan umur mereka miliaran tahun.

METODA “PENENTUAN UMUR” YANG SULIT DITERIMA

Pada pembahasan awal disebutkan bahwa metoda penentuan umur ditentukan dari observasi (pengamatan) atas peristiwa awal yang terjadi yaitu dengan: mengamati kejadian-kejadian geologis pada rentang waktu tertentu, yang kemudian diterima terjadi pada periode yang sama sekarang ini. Berdasarkan prinsip ini, perkiraan umur bumi bisa ditentukan.

Hal yang paling menarik adalah, hampir semua metoda penentuan umur melalui observasi kejadian alam memberikan hasil umur yang muda terhadap bumi.

Semua angka yang dihasilkan, walaupun ditemukan ada sedikit perbedaan satu sama lain, tetapi semuanya sangat kecil dibandingkan dengan umur bumi 4,5 miliar tahun yang diterima oleh para evolusionis.

Hasil yang paling penting dari teknik penentuan umur dengan observasi dan temuannya, adalah seperti berikut:

1. Umur komet

Komet

Ketika sebuah komet mendekati matahari, gaya tarik matahari mulai menghancurkan partikel-partikel kecil dari bintang ini. Jadi “ekor” komet terbentuk dari pecahan partikel ini. Karena perubahan bentuk ini, para ahli astronomi memperkirakan bahwa umur komet antara 1.500 sampai 10.000 tahun. Padahal sekarang ini ada banyak sekali komet. Jika alam semesta berumur miliaran tahun seperti yang diklaim, maka semua komet ini pasti sudah lama sekali mati.

Untuk mengatasi masalah ini, kaum evolusionis berdebat bahwa ada “Awan Oort” yang memproduksi komet di luar angkasa. Kenyataannya, ini benar-benar merupakan klaim khayalan yang tidak memiliki dasar yang beralasan. Keberadaan dari awan jenis ini sama sekali tidak pernah dilihat. Di sini kita bisa melihat “cara berpikir berputar-putar” yang lazim dibuat oleh para evolusionis. Dua argumen terpisah dibuat lebih dahulu, kemudian digunakan untuk saling membuktikan keduanya.

Contoh “cara berpikir berputar-putar” ini adalah dalam pernyataan mereka berikut ini, “Alam semesta umurnya sangat tua, dan karena itu, ada sesutu yang memproduksi komet berumur-pendek; dan karena adanya “sumber” yang membuat komet berumur-pendek ini, maka alam semesta pasti sudah berumur miliaran tahun.”

2. Endapan di dasar laut

Temuan lain yang menunjukkan umur bumi lebih muda dari pada yang dikatakan para evolusionis adalah dari pengamatan jumlah endapan yang terakumulasi di dasar laut. Dengan mengamati tumpukan lapisan di dasar laut setiap tahun, ternyata menghasilkan perhitungan umur bumi yang masik sangat muda.

Susunan lapisan endapan dasar laut

Peneliti bawah air mengamati bahwa rata-rata tebal lapisan endapan di dasar laut adalah 700 meter. Luas lautan dan permukaan laut di bumi adalah 360,9 juta kilometer persegi. Akibatnya, semua lapisan endapan di lautan ada sebanyak 325 juta kilometer kubik. Rata-rata berat dari substansi lapisan ini dihitung sekitar 2,3 gram per sentimeter kubik. Dari semua perhitungan itu diperoleh hasil perhitungan seluruh lapisan di dasar laut adalah seberat 748 juta kali miliar ton.

Kemudian, berapa waktu yang dibutuhkan dari semua jumlah itu terakumulasi di bawah laut?

Untuk menjawab pertanyaan ini, kita harus melihat berapa banyak material lapisan yang berpindah dari darat ke laut setiap tahunnya. Dari hasil perhitungan bahwa semua sungai bisa membawa 19.9 miliar ton lapisan per tahun. Jumlah lapisan yang ditinggalkan oleh pulau es dan daratan sekitar 2.2 miliar ton. Juga diasumsikan bahwa 1,46 juta ton lapisan dihasilkan dari gunung api bawah laut ke seluruh lautan. Dan dihitung bahwa 0,06 miliar ton laposan dibawa oleh angin. Jika semuanya dijumlahkan, diperoleh hasil 27,12 miliar ton lapisan yang masuk ke dalam laut setiap tahun.

Untuk menghitung berapa lama waktu uang dibutuhkan untuk membentuk lapisan bawah laut sekarang ini, angka 748 juta kali miliar ton dibagi dengan jumlah lapisan per tahun rata-rata 27,12 miliar ton. Hasilnya adalah 11 juta tahun. Ini sangat kontras dengan umur bumi yang diklaim oleh para evolusionis, yaitu 4,5 miliar tahun.

Lebih jauh, harus diperhatikan bahwa 11 juta tahun adalah kemungkinan umur maksimum dari bumi. Karena sangat masuk akal untuk berpikir bahwa jumlah lapisan yang dibawa ke laut jauh lebih banyak terjadi di masa lampau, sehingga bisa jadi sebagian besar lapisan di dasar laut berasal dari masa itu.

3. Rasio konsentrasi garam di laut

Ada sebuah material yang terus menerus berpindah dari darat ke laut. Berbagai jenis logam, mineral dan garam yang ada di bebatuan akan luruh ke dalam laut seiring dengan berjalannya waktu. Jika diasumsikan bahwa semua material ini tidak ada di laut pada saat terbentuknya bumi, kita bisa menghitung berapa waktu yang dibutuhkan oleh semua material ini sampai sekarang ditemukan terakumulasi di laut.

Tes yang dilakukan terhadap berbagai material yang ada di laut menunjukkan waktu yang dibutuhkan terakumulasi di laut pada masa kini, antara 100-300 juta tahun. Dan ini kembali membuat klaim para evolusionis terhadap umur bumi 4,5 miliar tahun, tidak berlaku.

4. Medan Magnetis Bumi

Medan magnetis bumi pertama kali diukur tahun 1835. Hasil pengukuran setelah itu menunjukkan bahwa medan magnetis berkurang secara tetap. Dengan menghitung pengurangan medan magnetis setiap tahun, dimungkinkan untuk menentukan berapa besarnya medan magnetis bumi pada mulanya. Berdasarkan perhitungan besaran medan magnetis di bumi mula-mula, terlihat bahwa umur bumi tidak terlalu tua, karena untuk mempertahankan struktur atmosfer bumi dan letaknya di orbit tata surya, medan magent bumi memiliki batasan tertentu.

Medan magnetis bumi

Kalkulasi dengan menggunakan prinsip ini menunjukkan bahwa umur bumi tidak lebih dari 10 ribu tahun. Karena umur tertua dari medan magnetis bumi akan sebanding dengan umur medan magnetis bintang. Tidak mungkin bumi memiliki medan magnetis sekuat yang dimiliki bintang yang bisa melakukan proses termonuklir untuk mempertahankan medan magnetnya.

Para evolusionis berargumentasi melawan teori ini, mengklaim bahwa ada sumber listrik (“dinamo”) yang mempertahankan medan magnetis dari penurunannya secara tetap, karena efek dari dinamo ini membuat rasionya tidak seimbang. Namun, teori dinamo ini sama sekali konsep khayalan dan tidak ada satu pun bukti yang bisa mendemonstrasikan keberadaannya.

Pertama, para evolusionis membuat dogma bahwa umur bumi tua, dan kemudian mereka membuat klaim teori khayalan untuk mendukung keyakinan mereka.

5. Populasi Menusia di Bumi

Populasi penduduk

Sekarang ini populasi penduduk bumi tiap tahun meningkat 21 %. Walaupun kita menerima bahwa pada masa lampau tingkat kematian sangat tinggi dan rasio pertambahan penduduk hanya 0,5%, maka dari perhitungan hanya tersisa dua orang manusia pada 4.500 tahun yang lalu. Di lain pihak, jika manusia pertama hidup 1 juta tahun yang lalu seperti yang di klaim para evolusionis, maka hari ini ada 10 pangkat 2.100 orang yang hidup di bumi, dengan perhitungan rasio kelahiran hanya 0,5% per tahun.

Lebih lanjut, klaim para evolusionis memiliki arti, ada miliaran orang telah hidup selama jutaan tahun. Kenyataannya, fosil manusia sangat jarang ditemukan, memperlihatkan bahwa klaim para evolusionis ini tidak masuk akal.

6. Gunung Berapi

Penelitian yang dibuat terhadap jumlah air “muda” dan letusan lava dari gunung-gunung berapi di dunia, menunjukkan bahwa umur bumi jauh lebih muda daripada yang dikatakan oleh evolusionis.

Gunung meletus

Dua puluh persen cairan yang dimuntahkan oleh gunung berapi, terdiri dari air yang terjebak di dalam bumi. Air ini dinamakan air “muda” (Juvenile), karena air ini tidak pernah muncul ke permukaan bumi sebelumnya. Ini bisa diketahui dari struktur kimianya.

Setiap tahun, hampir selusin gunung api di dunia meletus. Jumlah dari air “muda” di lava ini keluar sekitar satu kubik mil., di mana seluruh air di laut dan danau adalah 34 juta kubik mil. Jika pada mulanya tidak ada air di permukaan bumi, maka seluruh air di muka bumi ada setelah selama 340 juta tahun keluar dalam bumi. Padahal menurut konsep dari evolusionis, laut terbentuk di bumi 1-2 miliar tahun yang lalu.

Rasio dari magma yang keluar dari gunung berapi juga menyangkal klaim dari evolusionis. Diperkirakan magma sebanyak 0,8 km3 keluar ke permukaan bumi setiap tahun. Sesuai dengan rasio ini, dalam waktu 4,5 miliar tahun, maka akan banyak sekali terdapat lava di permukaan bumi melampaui semua dataran benua yang ada.

Tidak perlu disebutkan, semua lava ini akan membeku. Tapi ternyata tidak mungkin magma sebanyak ini ada terkumpul di permukaan bumi.

7. Lava Io

Lava di Io

Io, adalah satu satelit dari planet Jupiter, dengan ukuran yang sangat kecil. Akan tetapi dari dari hasil pengamatan yang dilakukan, Io masih memiliki gunung-gunung berapi aktif yang meletus dan memuntahkan lava dalam jumlah yang besar. Ini menunjukkan bahwa benda angkasa itu tidak berumur miliaran tahun, karena jika demikian – dengan jumlah letusan gunung berapi di Io sebanyak ini, seharusnya letusan ini sudah berakhir jutaan tahun yang lalu.

8. Sejarah Peradaban Manusia

Seluruh catatan sejarah mengenai umat manusia dan temuan arkeologis yang diketahui, berumur tidak lebih dara beberapa ribu tahun yang lalu. Jadi masuk akal bila dikatakan bahwa tidak ada ada informasi mengenai manusia sebelum 4,000 SM.

Sementara itu para evolusionis menyatakan bahwa manusia moderen sudah ada di bumi beberapa ratus ribu tahun yang lalu. Terhadap hal ini, muncul pertanyaan: “Mengapa manusia moderen hidup tanpa catatan apa pun yang bisa ditemukan selama ratusan ribu tahun, kemudian tiba-tiba muncul lagi pada tahun 4.000 SM?”

Semua kalkulasi alam dan metode observasi untuk memperkirakan sejarah bumi ternyata menghasilkan umur bumi yang lebih kecil dibandingkan yang diklaim para evolusionis.

Test yang digunakan oleh evolusionis tidak seperti kalkulasi dan observasi berdasar kejadian di alam, tetapi metode ini dibuat oleh mereka sendiri, berisi kriteria yang ditentukan sendiri. Akibatnya, metoda penentuan umur (tes radiometrik dan indeks fosil) buatan mereka memberikan hasil perhitungan tepat sesuai dengan yang mereka harapkan sebelumnya.

READ MORE - METODA “PENENTUAN UMUR” DAN UMUR BUMI YANG SEBENARNYA
Free Template Blogger collection template Hot Deals SEO

Aplikasi Nuklir di Bidang Kesehatan



1. Kedokteran Nuklir
Ilmu Kedokteran Nuklir adalah cabang ilmu kedokteran yang menggunakan sumber radiasi terbuka berasal dari disintegrasi inti radionuklida buatan, untuk mempelajari perubahan fisiologi, anatomi dan biokimia, sehingga dapat digunakan untuk tujuan diagnostik, terapi dan penelitian kedokteran. Pada kedokteran Nuklir, radioisotop dapat dimasukkan ke dalam tubuh pasien (studi invivo) maupun hanya direaksikan saja dengan bahan biologis antara lain darah, cairan lambung, urine da sebagainya, yang diambil dari tubuh pasien yang lebih dikenal sebagai studi in-vitro (dalam gelas percobaan).
Pemeriksaan kedokteran nuklir banyak membantu dalam menunjang diagnosis berbagai penyakitseperti penyakit jantung koroner, penyakit kelenjar gondok, gangguan fungsi ginjal, menentukan tahapan penyakit kanker dengan mendeteksi penyebarannya pada tulang, mendeteksi pendarahan pada saluran pencernaan makanan dan menentukan lokasinya, serta masih banyak lagi yang dapat diperoleh dari diagnosis dengan penerapan teknologi nuklir yang pada saat ini berkembang pesat.
Disamping membantu penetapan diagnosis, kedokteran nuklir juga berperanan dalam terapi-terapi penyakit tertentu, misalnya kanker kelenjar gondok, hiperfungsi kelenjar gondok yang membandel terhadap pemberian obat-obatan non radiasi, keganasan sel darah merah, inflamasi (peradangan)sendi yang sulit dikendalikan dengan menggunakan terapi obat-obatan biasa. Bila untuk keperluan diagnosis, radioisotop diberikan dalam dosis yang sangat kecil, maka dalam terapi radioisotop sengaja diberikan dalam dosis yang besar terutama dalam pengobatan terhadap jaringan kanker dengan tujuan untuk melenyapkan sel-sel yang menyusun jaringan kanker itu.
Di Indonesia, kedokteran nuklir diperkenalkan pada akhir tahun 1960an, yaitu setelah reaktor atom Indonesia yang pertama mulai dioperasikan di Bandung. Beberapa tenaga ahli Indonesia dibantu oleh tenaga ahli dari luar negeri merintis pendirian suatu unit kedokteran nuklir di Pusat Penelitian dan Pengembangan Teknik Nuklir di Bandung. Unit ini merupakan cikal bakal Unit Kedokteran Nuklir RSU Hasan Sadikin, Fakultas Kedokteran Universitas Padjadjaran. Menyusul kemudian unit-unit berikutnya di Jakarta (RSCM, RSPP, RS Gatot Subroto) dan di Surabaya (RS Sutomo). Pada tahun 1980-an didirikan unit-unit kedokteran nuklir berikutnya di RS sardjito (Yogyakarta) RS Kariadi (Semarang), RS Jantung harapan Kita (Jakarta) dan RS Fatmawati (Jakarta). Dewasa ini di Indonesia terdapat 15 rumah sakit yang melakukan pelayanan kedokteran nuklir dengan menggunakan kamera gamma, di samping masih terdapat 2 buah rumah sakit lagi yang hanya mengoperasikan alat penatah ginjal yang lebih dikenal dengan nama Renograf.

Radioisotop dan Teleterapi
Henry Bacquerel penemu radioaktivitas telah membuka cakrawala nuklir untuk kesehatan. Kalau Wilhelm Rontgen, menemukan sinar-x ketika gambar jari dan cincin istrinya ada pada film. Maka Marie Currie mendapatkan hadiah Nobel atas penemuannya Radium dan Polonium dan dengan itu pulalah sampai dengan 1960-an Radium telah digunakan untuk kesehatan hampir mencapai 1000 Ci. Tentunya ini sebuah jumlah yang cukup besar untuk kondisi saat itu. Masyarakat kedokteran menggunakan radioisotop Radium ini untuk pengobatan kanker, dan dikenal dengan Brakiterapi. Meskipun kemudian banyak ditemukan radiosiotop yang lebih menjanjikan untuk brakiterapi, sehingga Radium sudah tidak direkomendasikan lagi
Selain untuk Brakiterapi, radisotop Cs-137 dan Co-60 juga dimanfaatkan untuk Teleterapi, meskipun belakangan ini teleterapi dengan menggunakan radioisotop Cs-137 sudah tidak direkomendasikan lagi untuk digunakan. Meskipun pada dekade belakangan ini jumlah pesawat teleterapi Co-60 mulai menurun digantikan dengan akselerator medik . Radioisotop tersebut selain digunakan untuk brakiterapi dan teleterapi, saat ini juga telah banyak digunakan untuk keperluan Gamma Knife, sebagai suatu cara lain pengobatan kanker yang berlokasi di kepala.
Teleterapi adalah perlakuan radiasi dengan sumber radiasi tidak secara langsung berhubungan dengan tumor. Sumber radiasi pemancar gamma seperti Co-60 pemakaiannya cukup luas, karena tidak memerlukan pengamatan yang rumit dan hampir merupakan pemancar gamma yang ideal. Sumber ini banyak digunakan dalam pengobatan kanker/tumor, dengan jalan penyinaran tumor secara langsung dengan dosis yang dapat mematikan sel tumor, yang disebut dosis letal. Kerusakan terjadi karena proses eksitasi dan ionisasi atom atau molekul. Pada teleterapi, penetapan dosis radiasi sangat penting, dapat berarti antara hidup dan mati. Masalah dosimetri ini ditangani secara sangat ketat di bawah pengawasan Badan Internasional WHO dan IAEA bekerjasama dengan laboratorium-laboratorium standar nasional.
Orang pertama yang menggunakan radioisotop nuklir sebagai tracer (perunut) pada 1913-an adalah GC Havesy, dan dengan tulisannya dalam Journal of Nuclear Medicine, Havesy menerima hadiah Nobel Kimia 1943. Prinsip yang ditemukan Havesy inilah yang kemudian dimanfaatkan dalam Kedokteran Nuklir, baik untuk diagnosa maupun terapi. Radioisotop untuk diagnosa penyakit memanfaatkan instrumen yang disebut dengan Pesawat Gamma Kamera atau SPECT (Single Photon Emission Computed Thomography). Sedangkan aplikasi untuk terapi sumber radioisotop terbuka ini seringkali para pakar menyebutnya sebagai Endoradioterapi.

Rutherford dan Teknologi Pemercepat Radioisotop
Penemuan Rutherford memberikan jalan pada munculnya teknologi pemercepat radioisotop, sehingga J Lawrence dapat menggunakan Siklotron Berkeley dapat memproduksi P-32, yang merupakan radioisotop artifisial pertama yang digunakan untuk pengobatan leukimia. Sekitar 1939, I-128 diproduksi pertama kalinya dengan menggunakan Siklotron, namun dengan keterbatasan pendeknya waktu paro, maka I-131 dengan waktu paro 8 hari diproduksi. Perkembangan teknologi Siklotron untuk kesehatan menjadi penting setelah beberapa produksi radioisotop dengan waktu paro pendek mulai dimanfaatkan dan sebagai dasar utama PET (Positron Emission Tomography).
Radioisotop selain diproduksi dengan pemercepat, juga dapat diproduksi dengan reaktor nuklir. Majalah Science telah mengumumkan bahwa reaktor nuklir penghasil radioisotop pada 1946, dan menurut Baker sampai sekitar 1966 ada 11 reaktor nuklir di Amerika Serikat memproduksi radiosisotop untuk melayani kesehatan. Perkembangan teknologi reaktor juga saat ini dimanfaatkan untuk produksi secara in-situ aktivasi Boron untuk pengobatan penyakit maligna dan biasanya dikenal dengan BNCT (Boron Netron Capture Therapy ). Meskipun saat ini banyak juga berkembang BNCT dengan metode akselerator.
Generator radioisotop-pun saat ini juga berperan besar dalam memproduksi radioisotop untuk kesehatan, terutama kedokteran nuklir. Produksi, pengembangan dan pemanfaatan generator Mo-99/Tc-99m merupakan dampak positif dalam aplikasi nuklir untuk kesehatan dan farmasi. Dengan generator ini masalah-masalah faktor produksi ulang, waktu, dan jarak terhadap tempat yang memproduksi radioisotop, selain juga mengurangi dosis yang diterima oleh pasien.

2. Teknik Pengaktivan Neutron
Teknik nuklir ini dapat digunakan untuk menentukan kandungan mineral tubuh terutama untuk unsur-unsur yang terdapat dalam tubuh dengan jumlah yang sangat kecil (Co,Cr,F,Fe,Mn,Se,Si,V,Zn dsb) sehingga sulit ditentukan dengan metoda konvensional. Kelebihan teknik ini terletak pada sifatnya yang tidak merusak dan kepekaannya sangat tinggi. Di sini contoh bahan biologik yang akan idperiksa ditembaki dengan neutron.

3. Penentuan Kerapatan Tulang Dengan Bone Densitometer
Pengukuran kerapatan tulang dilakukan dengan cara menyinari tulang dengan radiasi gamma atau sinar-x. Berdasarkan banyaknya radiasi gamma atau sinar-x yang diserap oleh tulang yang diperiksa maka dapat ditentukan konsentrasi mineral kalsium dalam tulang. Perhitungan dilakukan oleh komputer yang dipasang pada alat bone densitometer tersebut. Teknik ini bermanfaat untuk membantu mendiagnosiskekeroposan tulang (osteoporosis) yang sering menyerang wanita pada usia menopause (matihaid) sehingga menyebabkan tulang muda patah.

4. Three Dimensional Conformal Radiotheraphy (3d-Crt)
Terapi Radiasi dengan menggunakan sumber radiasi tertutup atau pesawat pembangkit radiasi telah lama dikenal untuk pengobatan penyakit kanker. Perkembangan teknik elektronika maju dan peralatan komputer canggih dalam dua dekade ini telah membawa perkembangan pesat dalam teknologi radioterapi. Dengan menggunakan pesawat pemercepat partikel generasi terakhir telah dimungkinkan untuk melakukan radioterapi kanker dengan sangat presisi dan tingkat keselamatan yang tinggi melalui kemampuannya yang sangat selektif untuk membatasi bentuk jaringan tumor yang akan dikenai radiasi, memformulasikan serta memberikan paparan radiasi dengan dosis yang tepat pada target. Dengan memanfaatkan teknologi 3D-CRT ini sejak tahun 1985 telah berkembang metoda pembedahan dengan menggunakan radiasi pengion sebagai pisau bedahnya (gamma knife). Dengan teknik ini kasus-kasus tumor ganas yang sulit dijangkau dengan pisau bedah konvensional menjadi dapat diatasi dengan baik oleh pisau gamma ini, bahkan tanpa perlu membuka kulit pasien dan yang terpenting tanpa merusak jaringan di luar target.

5. Sterilisasi Alat Kedokteran
Alat/bahan yang digunakan di bidang kedokteran pada umumnya harus steril. Banyak di antaranya yang tidak tahan terhadap , sehingga tidak bisa disterilkan dengan uap air panas atau dipanaskan. Demikian pula sterilisasi dengan gas etilen oksida atau bahan kimia lain dapat menimbulkan residu yang membahayakan kesehatan. Satu-satunya jalan adalah sterilisasi dengan radiasi, dengan sinar gamma dan Co-60 yang dapat memberikan hasil yang memuaskan. Sterilisasi dengan cara tersebut sangat efektif, bersih dan praktis, serta biayanya sangat murah. Untuk transpiantasi jaringan biologi seperti tulang dan urat, serta amnion chorion untuk luka bakar, juga disterilkan dengan radiasi.

READ MORE - Aplikasi Nuklir di Bidang Kesehatan
Free Template Blogger collection template Hot Deals SEO
Buat temen-temen yang mungkin kesulitan dan ingin bertanya masalah pekerjaan rumah atau tugas nya, kita bisa SHARE disini :):) sebisa mungkin saya akan membantu :) silahkan Chat with me di Yahoo Messanger :):) Jangan sungkan ya, saya gak gigit koq :):)

Kontributor

Pengikut