Selamat Datang di Blog ku, Enjoy in here | be a best person with physics | Jangan Lupa Isiin Buku Tamu nya yaak ^_^

Kamis, 13 Januari 2011

Bentuk-Bentuk Reaksi Nuklir



Bentuk reaksi nuklir secara umum dapat diklasifikasikan ke dalam reaksi fisi dan fusi. Reaksi-reaksi nuklir tergantung dari jenis nuklidanya, jenis partikel penembak, dan cara peluruhan dari nuklida yang terbentuk.
Ø Nuklida radioaktif yang mengalami reaksi nuklir dapat diklasifikasikan ke dalam kelompok nuklir radioaktif alami dan buatan; nuklida radioaktif ringan dan berat.
Ø Partikel penembak yang menyebabkan reaksi nuklir dapat berwujud partikel yang bermuatan, partikel yang tidak bermuatan, partikel berat, dan gelombang elektromagnet.
Ø Cara peluruhan nuklida radioaktif dapat berjalan secara bertahap dan tidak bertahap; secara berlanjut dan tidak berlanjut.

1 Reaksi Fisi
Reaksi fisi adalah suatu reaksi pembelahan nukleus atau reaksi yang menuju ke arah penurunan massa nukleus. Reaksi fisi terjadi bila energi potensial coulomb Vc > Qfis; yang mana Qfis adalah energi yang diperlukan atau diserap oleh sebuah nuklida untuk membelah nukleus atau menurunkan jumlah massa nukleusnya. Nuklida-nuklida yang dapat atau mudah mengalami reaksi fisi adalah nuklida yang memiliki bilangan hasil komparasi antara jumlah netron dan protonnya tidak sama dengan satu.
Perbedaan yang cukup besar antara bilangan hasil komparasi jumlah netron dengan proton dibandingkan dengan angka satu menyebabkan harga Vc >>> Qfis, sehingga reaksi fisi semakin mudah terjadi. Hasil reaksi fisi dapat berupa nuklida yang sama tetapi sifat dari nukleusnya baru atau nuklida baru yang disertai dengan timbulnya radiasi radioaktif dan pembebasan sejumlah energi Qfis. Pada umumnya, jenis radiasi yang menyertai peluruhan massa nuklida radioaktif yang terdapat di alam adalah radiasi alfa, beta, dan elektro capture.
Nuklida yang mudah ditemukan di alam yang memiliki hasil komparasi jumlah netron terhadap protonnya lebih besar dari satu sehingga dapat mengalami reaksi fisi antara lain isotop U-238, U-235, dan Th-232.

a. Reaksi Fisi Uranium
Uranium yang ada di alam terdiri dari tiga isotop nuklir yaitu isotop nuklida U-238 dengan kelimpahan 99,2%, nuklida U-235 dengan kelimpahan 0,7%, dan nuklida U-236 dengan kelimpahan 0,1%.
Misalnya, nuklida U-238 dapat meluruh membentuk nuklida Th-234 yang disertai dengan radiasi partikel He-4 yang memerlukan waktu paruh t1/2 = 4,47 x 109 tahun, dan persamaan reaksinya dapat dituliskan sebagai berikut:
92U23890Th234 + 2He4 + Qfis
Seterusnya nuklida Th-234 meluruh membentuk nuklida U-234 disertai dengan radiasi beta yang memiliki waktu paruh t1/2 = 241 hari, dan persamaan reaksinya dapat dituliskan sebagai berikut:
90Th23492U234 + 2 -1e0 + Qfis
Nuklida U-234 meluruh membentuk nuklida Th-230 disertai dengan radiasi partikel He-4 yang memakai waktu paruh t1/2 = 8,0 x 104 tahun, dan seterusnya sampai diperoleh nuklida yang benar-benar stabil.

b. Reaksi Fisi Thorium
Nuklida thorium yang ditemukan di alam adalah Th-232 dengan kelimpahan 100%. Nuklida Th-232 ini dapat meluruh membentuk nuklida Ra-228 yang disertai dengan radiasi partikel He-4 yang menggunakan waktu paruh t1/2 = 1,4 x 1010 tahun. Nuklida Ra-228 dengan mudah meluruh membentuk nuklida Ac-228 yang disertai radiasi beta dengan waktu paruh 5,76 tahun, selanjutnya nuklida Ac-228 meluruh menghasilkan nuklida Th-228 yang disertai dengan radiasi beta dalam waktu paruh 6,13 tahun, dan seterusnya sampai dihasilkan nuklida yang stabil.

2 Reaksi Fusi
Reaksi fusi adalah reaksi penggabungandua nuklida atau lebih yang menghasilkan nuklida yang sama dengan struktur nukleus yang baru atau nuklida yang benar-benar baru di samping sejumlah energi dan radiasi radioaktif. Agar dua nuklida atau lebih dapat saling berinteraksi, maka nuklida tersebut harus mampu mengatasi energi coulomb penghalang yang ada. Energi coulomb yang ada merupakan bentuk energi tolak menolak yang ditimbulkan oleh nukleon-nukleon yang bermuatan listrik positif yaitu proton yang ada di dalam dua nuklida atau lebih yang akan melakukan reaksi fusi.
Untuk mengatasi energi tolak menolak coulomb, maka nuklida-nuklida harus menyediakan energi awal yang besar yang antara lain dalam bentuk energi kinetik. Energi kinetik ini dapat diperoleh dari hasil pengubahan nergi potensial yang sebelumnya telah dimiliki, atau dari hasil menyerap sejumlah energi dari lingkungan. Besarnya energi kinetik yang dapat digunakan untuk mengatasi energi tolak menolak coulomb tersebut minimal 0,1 MeV. Apabila energi yang dilepaskan atau dibebaskan sewaktu reaksi fusi nuklir besarnya jauh lebih besar dari energi kinetiknya, maka secara akumulatif hasil reaksi fusi masih disertai dengan pembebasan energi sebesar Qfus.
Teknik yang digunakan untuk membantu terjadinya reaksi fusi antara dua nuklida atau lebih adalah dengan memberikan energi kinetik dengan cara menembakkan partikel nuklida satu ke nuklida yang lainnya. Misalnya, apabila dua nuklida H-2 saling bertabrakan akan terbentuk nuklida He-4 yang disertai dengan pembebasan sejumlah energi Qfus. Persamaan reaksi fusinya dapat dituliskan sebagai berikut:
1H2 + 1H22He4 + Qfus
Contoh lain adalah reaksi fusi nuklida Be-9 dan He-4 yang menghasilkan nuklida C-12 yang diikuti oleh radiasi partikel netron serta pembebasan sejumlah energi reaksi fusi nuklir Qfus. Persamaan reaksinya:
4Be9 + 2He46C12 + 0n1 + Qfus

3 Reaksi Nuklir dengan Ion Berat
Ion berat adalah ion yang bermassa lebih besar dari ion helium, contohnya ion-ion 3Li7(+3), 4Be9(+4), dan 6C12(+6). Sebutan ion dalam kimia dimaksudkan untuk menyatakan keberadaan partikel proton dalam sebuah nukleus.
Ion-ion berat seperti 6C12(+6) seterlah dipercepat lajunya sampai berenergi 100 MeV bila menembak nuklida yang sangat berat pun dapat menyebabkan terjadinya reaksi nuklir. Contoh, apabila yang ditembak dengan ion nukleus C(+6) itu adalah nuklida Cu-65, maka akan terbentuklah nuklida Br-74 yang disertai pemancaran 3 buah partikel netron dan sejumlah energi reaksi nuklir, dengan persamaan reaksi sebagai berikut:
6C12 + 29Cu6535Br74 + 30n1 + Qf
Dengan menggunakan nuklida yang memiliki massa lebih tinggi dari ion nukleus C(+6) dan setelah diberi energi kinetik yang cukup besar maka dapat digunakan untuk merubah sifat nuklida-nuklida yang menjadi sasaran tembak dari non radioaktif menjadi radioaktif. Pada contoh di atas, nuklida yang bersifat radioaktif adalah nuklida 35Br74 dan dapat melakukan proses penangkapan elektron yang berenergi terendah yaitu elektron dari orbital K sehingga menurunkan jumlah muatan nukleusnya sebesar jumlah partikel elektron yang diserap dalam waktu paruh sekitar 25,3 menit. Persamaan reaksi penangkapan elektronnya sebagai berikut:
35Br74 + -1e034Se74 + 2gamma + Qf

4 Reaksi Aktivasi Netron
Radiasi netron dapat dihasilkan melalui proses fisi nuklida radioaktif yang dilakukan dalam reaktor atom atau generator Van de Graaf. Radiasi partikel netron tidak bermuatan listrik dan memiliki daya tembus besar. Radiasi netron yang dihasilkan dapat dibagi menjadi dua yaitu radiasi netron lambat dan radiasi netron cepat. Radiasi netron lambat yang juga disebut dengan netron termal sifatnya mudah ditangkap oleh nukleus suatu atom dan menghasilkan nukleus atom baru yang tidak stabil dan radioaktif. Sebaliknya, radiasi netron cepat lebih sulit ditangkap oleh suatu nuklida. Berdasarkan dari sifat radiasi netron lambat ini maka radiasi netron lambat dapat digunakan untuk membuat nuklida radioaktif dari nuklida yang tidak radioaktif.

5 Peluruhan Partikel Alfa dan Partikel Beta
Ø Peluruhan Partikel Alfa
Nuklida-nuklida radioaktif yang memiliki jumlah massa yang terlalu besar dan hasil perbandingan antara jumlah netron dan protonnya jauh lebih besar dari angka satu, mempunyai kecenderungan menurunkan jumlah massa dan nilai hasil komparasi antara jumlah netron dan protonnya dengan cara memancarkan partikel alfa atau 2He4. Akibat teradiasikannya partikel alfa maka nuklida radioaktif tersebut dapat menurunkan jumlah massanya sebesar empat nukleon dalam satu kali radiasi. Hal ini terjadi karena energi yang diperlukan untuk memancarkan partikel alfa lebih rendah dibandingkan dengan memancarkan empat partikel nukleon secara bertahap. Partikel nukleon berat tersebut dapat berwujud proton dan netron. Energi peluruhan partikel alfa akan turun dengan bertambahnya jumlah massa nukleon (A) dan akan naik dengan bertambahnya jumlah muatan proton (Z).
Pada tahun 1906, Rutherford menunjukkan secara kualitatif hubungan antara energi radiasi partikel alfa dan waktu paruh nuklida radioaktif yang memancarkan partikel alfa tersebut. Bentuk hubungannya adalah semakin besar energi radiasi partikel alfanya maka semakin pendek waktu paruhnya. Bila energi radiasi partikel alfa semakin besar maka jarak tempuh radiasi partikel alfa yang disingkat R tersebut juga semakin jauh. Hubungan tidak langsung antara waktu paruh dan jarak tempuh radiasi partikel alfa dinyatakan dengan persamaan matematis berikut:








Rounded Rectangle : Log L = a + b Log R

Dimana:
L = tetapan peluruhan nuklida radioaktif peluruh partikel alfa
R = jarak tempuh radiasi partikel alfa
a dan b = tetapan yang harganya tergantung pada jenis deret radioaktif
Waktu paruh (t1/2) peluruhan partikel alfa dapat ditentukan dengan penggunaan persamaan berikut:
Partikel alfa yang berenergi rendah dan bermuatan listrik dapat menembus penghalang potensial Coulomb yang ukurannya lebih tinggi yang besarnya sekitar 9 MeV. Menurut teori mekanika kuantum bahwa partikel alfa yang berenergi lebih rendah masih dapat menerobos potensial penghalang Coulomb yang ukurannya lebih tinggi dan keluar dari nukleus. Peristiwa ini dikenal sebagai “Tunneling Effect”. Kemungkinan terjadinya penembusan energi potensial penghalang ini menjadi kecil bila jumlah muatan proton (Z) bertambah, tetapi akan menjadi besar bila jumlah nukleon (A) bertambah. Dengan kata lain bila hasil komparasi antara jumlah netron dan proton sangat besar maka kecenderungan nuklida radioaktif berat meluruhkan partikel alfa sangat besar. Peluruhan partikel α selalu disertai pemancaran radiasi γ.

Ø Peluruhan Partikel Beta
Nuklida-nuklida berat yang mempunyai nomor massa (A) ganjil dalam menuju ke keadaan stabil cenderung meluruhkan satu partikel beta, tetapi untuk nomor massa (A) genap lebih cenderung meluruhkan dua atau tiga partikel betanya. Untuk menuju ke keadaan nuklida yang stabil dapat dilakukan satu dari tiga tipe peluruhan partikel beta, yaitu peluruhan partikel beta yang bermuatan negatif, peluruhan beta yang bermuatan positif, dan penangkapan elektron. Suatu nuklida mempunyai nomor massa (A) yang netronnya lebih banyak daripada protonnya, sehingga ada kecenderungan mengubah netronnya. Misalnya, satu netron (0n1) diubah menjadi satu proton (+1p1), satu partikel beta (-1e0) dan satu anti neutrino (-1v). Akibat dari contoh proses ini, nomor nuklida (Z) akan bertambah dengan satu angka dan jumlah netron akan berkurang satu angka, dan nomor massa nuklida (A) tetap. Proses ini disebut proses peluruhan beta.
Apabila suatu nuklida berat yang bernomor massa (A) memiliki jumlah proton yang tidak jauh berbeda dengan netronnya, akan ada kecenderungan untuk mengubah protonnya. Sebagai contoh, bila yang diubah adalah satu proton menjadi netron dan satu partikel beta yang bermuatan positif (+1e0), satu massa neutrino yang bermuatan positif (+1v) dan satu netron. Akibat dari peristiwa ini yaitu nomor nuklidanya akan turun satu angka, jumlah netronnya bertambah satu angka, dan nomor massanya tetap. Proses peluruhan partikel beta yang bermuatan positif disebut proses peluruhan positron. Dampak dari peluruhan partikel positron atau beta positif ini akan diikuti oleh proses anhilasi atau penghilangan energi sebesar 1,02 MeV yang ekuivalen dengan dua kuanta radiasi gama. Ini terjadi karena partikel positron yang meluruh dari nuklida akan berinteraksi dan saling menetralkan dengan elektron yang mengorbit di luar nukleus.
Arah meluruhnya partikel beta yang bermuatan negatif dapat menuju ke nukleus dan berinteraksi dengan nukleon yang bermuatan positif atau proton. Dampak terjadinya interaksi antara satu proton dengan satu elektron adalah jumlah netron akan bertambah satu, jumlah proton berkurang satu, dan disertai pembebasan energi sebesar Eo. Besarnya energi Eo dapat ditentukan dengan cara sebagai berikut:




Rounded Rectangle : Eo = E netron - E proton - e elektron

yang mana E = mc2. Elektron yang mudah memasuki nukleus adalah elektron yang menempati orbital terdekat dengan nukleus yaitu elektron dari orbital K. Kekosongan elektron dari orbital K akan segera diisi oleh elektron yang berasal dari orbital diatasnya, misalnya oleh elektron dari orbital L. Perpindahan elektron dari orbital yang berenergi tinggi ke orbital yang berenergi rendah akan disertai dengan pembebasan sejumlah energi yang berwujud radiasi X.
Suatu nuklida berat lebih cenderung meluruhkan partikel beta daripada partikel proton dan netronnya. Ini disebabkan karena energi yang diperlukan untuk meluruhkan satu proton atau satu netron jauh lebih besar dibandingkan dengan meluruhkan satu partikel beta. Apabila nuklida berat meluruhkan satu partikel proton atau netron diperlukan energi sekitar 5 MeV s.d 8 MeV, dan bila meluruhkan satu partikel beta hanya diperlukan energi sebesar 0,51 MeV.

6 Transisi Radiasi Gama
Dalam peluruhan partikel alfa dan beta oleh nuklida radioaktif banyak menghasilkan nuklida-nuklida jenis baru yang ternyata masih dalam keadaan tereksitasi. Pengembalian keadaan tereksitasi ke keadaan tak tereksitasi atau ke keadaan tereksitasi dengan energi yang lebih rendah dapatdilakukan dengan tanpa mengubah jumlah proton (Z) dan nomor massa nuklida (A), dengan cara memancarkan radiasi gelombang elektromagnet. Radiasi gelombang elektromagnet ini merupakan radiasi gamma. Peristiwa radiasi gamma ini tidak saja menyertai peristiwa peluruhan partikel alfa dan beta, tetapi hampir selalu menyertai semua bentuk peluruhan yang terjadi pada nuklida-nuklida radioaktif.
READ MORE - Bentuk-Bentuk Reaksi Nuklir
Free Template Blogger collection template Hot Deals SEO

Pemanfaatan Zat Radioaktif dalam Berbagai Bidang



a. Pemanfaatan Radioisotop Dalam Bidang Kesehatan
* Sebagai Perunut
Dalam bidang kesehatan radioisotop digunakan sebagai perunut (tracer) untuk mendeteksi kerusakan yang terjadi pada suatu organ tubuh. Selain itu radiasi dari radioisotop tertentu dapat digunakan untuk membunuh sel-sel kanker sehingga tidak perlu dilakukan pembedahan untuk mengangkat jaringan sel kanker tersebut. Berikut ini adalah contoh beberapa radioisotop yang dapat digunakan dalam bidang kesehatan (Sutresna, 2007).
1) Iodium-131 (I-131)
I-131 digunakan untuk mendeteksi kerusakkan pada kelenjar gondok dan untuk mendeteksi jaringan kanker pada otak.
2) Kobalt-60 (Co-60)
Pemancaran sina gamma Co-60 digunakan untuk membunuh sel-sel kanker dan juga dapat digunakan untuk pengobatan penyakit leukimia.

3) Teknetium-99(Tc-99)
Tc-99 digunakan untuk membunuh sel-sel kanker.
4) Talium-201 (TI-201)
Talium-201 digunakan untuk mendeteksi penyakit jantung dan pembuluh darah.
5) Besi-59 (Fe-59)
Besi-59 digunakan untuk mempelajari proses pembentukan sel darah merah.
6) Fosforus-32 (P-32)
P-32 digunakan untuk pengobatan penyakit polycythemia rubavera, yaitu pembentukkan sel darah merah yang berlebihan. Didalam penggunaannya P-32 disuntikkan ke dalam tubuh sehingga radiasinya yang memancarkan sinar beta dapat menghambat pembentukan sel darah merah pada sumsum tulang. Sedangkan, sinar gamma dapat digunakan untuk mensterilkan alat-alat kedokteran, sebelum dikemas dan ditutup rapat, misalnya pada proses sterilisasi alat suntik. Sebenarnya sebelum dikemas, alat suntik sudah disterilkan. Tetapi, pada proses pengemasan masih mungkin terjadi kontaminasi, sehingga setelah alat suntik tersebut dikemas dan ditutup rapat perlu dilakukan sterilisasi ulang dengan menggunakan sinar gamma (Sutresna, 2007).
7) Xenon-133 (Xe-133)
Xe-133 digunakan untuk mendeteksi penyakit paru-paru.

* Berdasarkan radiasinya
1) Sterilisasi radiasi
Radiasi dalam dosis tertentu dapat mematikan mikroorganisme sehingga dapat digunakan untuk sterilisasi alat-alat kedokteran. Steritisasi dengan cara radiasi mempunyai beberapa keunggulan jika dibandingkan dengan sterilisasi konvensional (menggunakan bahan kimia), yaitu (Abdul Jalil Amri Arma, 2009):
a) Sterilisasi radiasi lebih sempurna dalam mematikan mikroorganisme.
b) Sterilisasi radiasi tidak meninggalkan residu bahan kimia.
c) Karena dikemas dulu baru disetrilkan maka alat tersebut tidak mungkin tercemar bakteri lagi sampai kemasan terbuka. Berbeda dengan cara konvensional, yaitu disterilkan dulu baru dikemas, maka dalam proses pengemasan masih ada kemungkinan terkena bibit penyakit.

2) Terapi tumor atau kanker
Berbagai jenis tumor atau kanker dapat diterapi dengan radiasi. Sebenarnya, baik sel normal maupun sel kanker dapat dirusak oleh radiasi tetapi sel kanker atau tumor ternyata lebih sensitif (lebih mudah rusak). Oleh karena itu, sel kanker atau tumor dapat dimatikan dengan mengarahkan radiasi secara tepat pada sel-sel kanker tersebut (Abdul Jalil Amri Arma, 2009).

3) Penentuan Kerapatan Tulang Dengan Bone Densitometer
Pengukuran kerapatan tulang dilakukan dengan cara menyinari tulang dengan radiasi gamma atau sinar-X. Berdasarkan banyaknya radiasi gamma atau sinar-X yang diserap oleh tulang yang diperiksa maka dapat ditentukan konsentrasi mineral kalsium dalam tulang. Perhitungan dilakukan oleh komputer yang dipasang pada alat bone densitometer tersebut. Teknik ini bermanfaat untuk membantu mendiagnosiskekeroposan tulang (osteoporosis) yang sering menyerang wanita pada usia menopause (matihaid) sehingga menyebabkan tulang muda (Yudhi, 2008).

4) Three Dimensional Conformal Radiotheraphy (3d-Crt)
Terapi radiasi dengan menggunakan sumber radiasi tertutup atau pesawat pembangkit radiasi telah lama dikenal untuk pengobatan penyakit kanker. Perkembangan teknik elektronika maju dan peralatan komputer canggih dalam dua dekade ini telah membawa perkembangan pesat dalam teknologi radioterapi. Dengan menggunakan pesawat pemercepat partikel generasi terakhir telah dimungkinkan untuk melakukan radioterapi kanker dengan sangat presisi dan tingkat keselamatan yang tinggi melalui kemampuannya yang sangat selektif untuk membatasi bentuk jaringan tumor yang akan dikenai radiasi, memformulasikan serta memberikan paparan radiasi dengan dosis yang tepat pada target. Dengan memanfaatkan teknologi 3D-CRT ini sejak tahun 1985 telah berkembang metoda pembedahan dengan menggunakan radiasi pengion sebagai pisau bedahnya (gamma knife). Dengan teknik ini kasus-kasus tumor ganas yang sulit dijangkau dengan pisau bedah konvensional menjadi dapat diatasi dengan baik oleh pisau gamma ini, bahkan tanpa perlu membuka kulit pasien dan yang terpenting tanpa merusak jaringan di luar target (Yudhi, 2008).

5) Teknik Pengaktivan Neutron
Teknik nuklir ini dapat digunakan untuk menentukan kandungan mineral tubuh terutama untuk unsur-unsur yang terdapat dalam tubuh dengan jumlah yang sangat kecil (Co,Cr,F,Fe,Mn,Se,Si,V,Zn dsb) sehingga sulit ditentukan dengan metoda konvensional. Kelebihan teknik ini terletak pada sifatnya yang tidak merusak dan kepekaannya sangat tinggi. Di sini contoh bahan biologik yang akan diperiksa ditembaki dengan neutron (Yudhi, 2008).

b. Pemanfaatan Radioisotop Dalam Industri
*Sebagai Perunut
Untuk mempelajari pengaruh oli dan adiktif pada mesin selama mesin bekerja digunakan suatu isotop sebagai perunut, Dalam hal ini, piston, ring dan komponen lain dari mesin ditandai dengan isotop radioaktif dari bahan yang sama (Abdul Jalil Amri Arma, 2009).

*Berdasarkan radiasinya (Sutresna, 2007)
1) Pemeriksaan tanpa merusak
Radiasi sinar gamma dapat digunakan untuk memeriksa cacat pada logam atau sambungan las, yaitu dengan meronsen bahan tersebut. Tehnik ini berdasarkan sifat bahwa semakin tebal bahan yang dilalui radiasi, maka intensitas radiasi yang diteruskan makin berkurang, jadi dari gambar yang dibuat dapat terlihat apakah logam merata atau ada bagian-bagian yang berongga didalamnya. Pada bagian yang berongga itu film akan lebih hitam.

2) Mengontrol ketebalan bahan
Ketebalan produk yang berupa lembaran, seperti kertas film atau lempeng logam dapat dikontrol dengan radiasi. Prinsipnya sama seperti diatas, bahwa intensitas radiasi yang diteruskan bergantung pada ketebalan bahan yang dilalui. Detektor radiasi dihubungkan dengan alat penekan. Jika lembaran menjadi lebih tebal, maka intensitas radiasi yang diterima detector akan berkurang dan mekanisme alat akan mengatur penekanan lebih kuat sehingga ketebalan dapat dipertahankan.


3) Pengawetan bahan
Radiasi juga telah banyak digunakan untuk mengawetkan bahan seperti kayu, barang-barang seni dan lain-lain. Radiasi juga dapat menningkatkan mutu tekstil karena inengubah struktur serat sehingga lebih kuat atau lebih baik mutu penyerapan warnanya. Berbagai jenis makanan juga dapat diawetkan dengan dosis yang aman sehingga dapat disimpan lebih lama. Radiasi sinar gamma dapat dilakukan pada pengawetan makanan melalui dua cara:
a. Membasmi mikroorganisme, misalnya pada pengawetan rempah-rempah, seperti merica, ketumbar, dan kemimiri.
b. Menghambat pertunasan, misalnya untuk pengawetan tanaman yang berkembang biak dengan pembentukkan tunas, seperti kentang, bawang merah, jahe, dan kunyit.

c. Pemanfaatan Radioisotop Dalam Hidrologi
1. Radioisotop digunakan untuk menguji kecepatan aliran sungai atau aliran lumpur
Radioisotop ini dapat digunakan untuk mengukur debit air. Biasanya, radioisotop natrium-24 (Na-24) digunakan dalam bentuk garam NaCl. Dalam penggunaannya, garam ini dilarutkan ke dalam air atau lumpur yang akan diteliti debitnya. Pada tempat atau jarak tertentu, intensitas radiasi diperiksa, sehingga rentang waktu yang diperlukan untuk mencapai jarak tersebut dapat diketahui (Abdul Jalil Amri Arma, 2009).

2. Pemanfaatan Radioisotop Untuk Mendeteksi Kebocoran Pada Pipa Bawah Tanah
Untuk mendeteksi kebocoran pada pipa-pipa yang ditanam di bawah tanah, biasanya digunakan radioisotop Na-24 dalam bentuk garam NaCl atau Na2CO3. Radioisotop Na-24 ini dapat memancarkan sinar gamma yang bisa dideteksi dengan menggunakan alat pencacah radioaktif Geiger Counter. Untuk mendeteksi kebocoran pada pipa air, garam yang mengandung radioisotop Na-24 dilarutkan kedalam air. Kemudian, permukaan tanah di atas pipa air diperiksa dengan Geiger Counter. Intensitas radiasi yang berlebihan menunjukkan adanya kebocoran. Radioisotop juga dapat digunakan untuk menguji kebocoran sambungan logam pada pembuatan rangka pesawat (Sutresna, 2007).


d. Pemanfaatan Radioisotop Dalam Bidang Biologi
Dalam bidang biologi, radioisotop dapat digunakan untuk mempelajari mekanisme reaksi fotosintesis. Radioisotop ini, berupa karbon-14 (C-14) atau oksigen-18 (O-18). Keduanya dapat digunakan untuk mengetahui asal-usul atom oksigen (dari CO2 atau dari H2O) yang akan membentuk senyawa glukosa atau oksigen yang dihasilkan pada proses fotosintesis (Sutresna, 2007 dan Abdul Jalil Amri Arma, 2009).
6CO2 + 6H2O C6H12O6 + 6O2
Kegunaan lain radioisotop dalam bidang biologi sebagai berikut.
1) Mempelajari proses penyerapan air serta sirkulasinya di dalam batang tumbuhan.
2) Mempelajari pengaruh unsur-unsur hara selain unsur-unsur N, P, dan K terhadap perkembangan tumbuhan.
3) Memacu mutasi gen tumbuhan dalam upaya mendapatkan bibit unggul.
4) Mempelajari kesetimbangan dinamis.
5) Mempelajari reaksi pengeseran.

e. Pemanfaatan radioisotop dalam bidang pertanian
Untuk mendorong kemajuan di bidang pertanian, diperlukan suatu teknik pemupukan yang baik, pemberantasan hama tanaman yang tepat, dan penggunaan bibit yang unggul.
1. Pemberantasan hama dengan teknik jantan mandul
Radiasi dapat mengakibatkan efek biologis, misalnya hama kubis. Di laboratorium dibiakkan hama kubis dalam bentuk jumlah yang cukup banyak. Hama tersebut lalu diradiasi sehingga serangga jantan menjadi mandul. Setelah itu hama dilepas di daerah yang terserang hama. Diharapkan akan terjadi perkawinan antara hama setempat dengan jantan mandul dilepas. Telur hasil perkawinan seperti itu tidak akan menetas. Dengan demikian reproduksi hama tersebut terganggu dan akan mengurangi populasi (Abdul Jalil Amri Arma, 2009).

2. Pemuliaan tanaman
Pemuliaan tanaman atau pembentukan bibit unggul dapat dilakukan dengan menggunakan radiasi. Misalnya pemuliaan padi, bibit padi diberi radiasi dengan dosis yang bervariasi, dari dosis terkecil yang tidak membawa pengaruh hingga dosis rendah yang mematikan. Biji yang sudah diradiasi itu kemudian disemaikan dan ditaman berkelompok menurut ukuran dosis radiasinya.
Radioisotop ini digunakan untuk memicu terjadinya mutasi pada tanaman. Dari proses mutasi ini diharapkan dapat diperoleh tanaman dengan sifat-sifat yang menguntungkan, misalnya tanaman padi yang lebih tahan terhadap hama dan memiliki tunas lebih banyak. Selain itu, radioisotop juga dapat digunakan untuk memperpanjang masa simpan produk-produk pertanian (Sutresna, 2007).

3. Penyimpanan makanan
Kita mengetahui bahwa bahan makanan seperti kentang dan bawang jika disimpan lama akan bertunas. Radiasi dapat menghambat pertumbuhan bahan-bahan seperti itu. Jadi sebelum bahan tersebut di simpan diberi radiasi dengan dosis tertentu sehingga tidak akan bertunas, dengan dernikian dapat disimpan lebih lama (Abdul Jalil Amri Arma, 2009).

4. Pemupukan
Untuk melaksanakan pemupukan pada waktu yang tepat, dapat digunakan nitrogen-15 (N-15). Pupuk yang mengandung N-15 dipantau dengan alat pencacah. Jika pencacah tidak mendeteksi lagi adanya radiasi, berarti pupuk sudah sepenuhnya diserap oleh tanaman. Pada saat itulah pemupukan berikutnya sebaiknya dilakukan. Dari upaya ini akan diketahui jangka waktu pemupukan yang diperlukan dan sesuai dengan usia tanaman (Sutresna, 2007).

g. Pemanfaatan Radioisotop Dalam Bidang Kimia
Dalam bidang kimia, radioisotop dapat digunakan untuk mempelajari mekanisme reaksi kimia, misalnya radioisotop oksigen-18 (O-18) digunakan untuk mempelajari mekanisme reaksi esterifikasi. Berdasarkan penelitian diketahui bahwa pada reaksi esterifikasi, atom O yang membentuk senyawa H2O berasal dari asam karboksilat. Adapun atom O yang membentuk senyawa ester berasal dari alkohol (Sutresna, 2007).


h. Pemanfaatan Radioisotop Untuk Pembangkit Tenaga Listrik
Reaksi inti mengahsilkan energi yang sangat besar. Pada pembangkit tenaga nuklir (PLTN), energi inti digunakan untuk memanaskan air sehingga terbentuk uapa. Kemudian, uap in digunakan untuk mengerakkan turbin. Peregerakan turbin merupakan energi mekanik yang dapat memberi kemampuan generator untuk mengubah energi mekanik tersebut menjadi energi listrik. Pada PLTN, reaksi inti berlangsung terkendali di dalam suatu reaktor nuklir (Sutresna, 2007).

i. Pemanfaatan Radioisotop Untuk Penanggalan Karbon
Penanggalan karbon merupakan fungsi radioisotop untuk menentukan umur suatu senyawa organik, misalnya untuk menentukan umur fosil. Radioisotop yang digunakan adalah karbon-14 (C-14) (Sutresna, 2007).

j. Pemanfaatan Radioisotop Dalam Bidang Pertambangan
Tritium radioaktif dan cobalt 60 digunakan untuk merunut alur-alur minyak bawah tanah dan kemudian menentukan srategi yang paling baik untuk menyuntikkan air ke dalam sumur-sumur. Hal ini akan memaksa keluar minyak yang tersisa di dalam kantung-kantung yang sebelumnya belum terangkat. Berjuta-juta barrel tambahan minyak mentah telah diperoleh dengan cara ini (Bangkit Sanjaya, 2009)
READ MORE - Pemanfaatan Zat Radioaktif dalam Berbagai Bidang
Free Template Blogger collection template Hot Deals SEO

Pengantar Listrik



Listrik adalah kondisi dari partikel subatomik tertentu, seperti elektron dan proton, yang menyebabkan penarikan dan penolakan gaya di antaranya. Listrik adalah sumber energi yang disalurkan melalui kabel. Arus listrik timbul karena muatan listrik mengalir dari saluran positif ke saluran negatif. Listrik berasal dari kata elektron yang berarti batu ambar. Jika sebuah batu ambar digosok dengan kain sutra, maka batu akan dapat menarik benda-benda ringan seperti sobekan kertas. Dari hal tersebut maka dikatakan batu ambar tersebut bermuatan listrik. Muatan merupakan ciri dasar dari semua penyusun zat. Zat tersusun dari proton, netron dan elektron. Elektron memiliki muatan negatif dan proton memiliki muatan positif. Besarnya muatan listrik (dilambangkan dengan Q) yang dimiliki sebuah benda, secara sederhana menunjukkan berapa kurang atau lebihnya jumlah muatan negatif dibanding dengan jumlah muatan positifnya.

Terdapat beberapa hukum yang mengatur mengenai masalah gejala mengenai listrik, antara lain sebagai berikut.

  1. Hukum Faraday

Michael Faraday ialah ilmuwan Inggris yang mendapat julukan sebagai Bapak Listrik. Ia mempelajari berbagai bidang ilmu pengetahuan, termasuk elektromagnetisme dan elektrokimia. Ia juga menemukan alat yang nantinya menjadi pembakar Bunsen, yang digunakan hampir di seluruh laboratorium sains sebagai sumber panas yang praktis. Efek magnetisme menuntunnya menemukan ide-ide yang menjadi dasar teori medan magnet. Ia banyak memberi ceramah untuk mempopulerkan ilmu pengetahuan ilmu pengetahuan pada masyarakat umum. Pendekatan rasionalnya dalam mengembangkan teori dan menganalisis hasilnya amat mengagumkan. Hukum faraday yang mengatur kelistrikan, yaitu

Hukum I:

Jumlah dari tiap elemen atau grup dari elemen-elemen yang dibebaskan pada kedua anoda dan katoda selama elektrolisa sebanding dengan jumlah listrik yang mengalir dalam larutan.

Hukum II:

Jumlah dari arus listrik bebas sama dengan jumlah ion atau jumlah substansi ion yang dibebaskan dengan memberikan sejumlah arus listrik adalah sebanding dengan berat ekivalennya.

Arah medan listrik di beberapa titik dapat dilukiskan secara grafis dengan menggunakan garis-garis gaya (khayalan). Konsep dasar ini dikemukakan oleh Michael Faraday yang berbunyi:

“Sebuah garis gaya dalam suatu medan listrik adalah sebuah garis gaya yang dilukiskan apabila garis singgung pada setiap titiknya menunjukkan arah medan listrik pada titik tersebut”.


Gambar 1.1 Arah Garis Gaya

Garis gaya menuju keluar dari muatan positif dan masuk menuju kemuatan negatif. Untuk menunjukkan arah-arah garis gaya dapat dilakukan percobaan sebagai berikut.

Kuat medan listrik pada sebuah titik didalam ruang adalah sebanding dengan jumlah garis gaya per satuan luas permukaan yang tegak lurus medan listrik pada titik tersebut. Dapat disimpulkan bahwa kuat medan listrik akan terasa kuat apabila jarak antara kedua muatan tersebut saling berdekatan, sehingga garis gaya yang dihasilkan sangat rapat. Sebaliknya jika kedua muatan tersebut berjauhan, maka kuat medan listrik yang terbentuk akan lemah. Penggunaan dari potensial listrik dapat dihubungkan dengan konsep medan listrik, dasar-dasar rangkaian listrik, serta masalah praktis yang terkait dengan piranti-piranti listrik. Untuk menjelaskan definisi dan sifat dari dua buah titik yang saling beda potensial dan terletak pada sebuah medan listrik sebagai beda potensial antara dua titik tersebut.

Beda potensial antara dua titik adalah kerja yang dilakukan per satuan muatan jika muatan tersebut dipindahkan. Dalam satuan SI, satuan beda potensial listrik adalah Volt ( disingkat V), dengan 1 volt= 1 joule/coulomb. Potensial listrik dapat didefinisikan sebagai bentuk perbandingan energi listrik dengan muatan titik tersebut.

  1. Hukum Coulomb

Muatan listrik menunjukkan bahwa muatan tidak menyebar pada daerah tertentu melainkan berkumpul dalam satu titik. Hukum Coulomb adalah hukum yang menjelaskan hubungan antara gaya yang timbul antara dua titik muatan, yang terpisahkan jarak tertentu, dengan nilai muatan dan jarak pisah keduanya.

  1. Muatan listrik yang berada diruang vakum (hampa udara)

2. Muatan listrik yang berada di medium dielektrik

Keterangan:

F : besar gaya interaksi yang dialami oleh masing-masing muatan (N).

Q1, Q2 : besar masing-masing muatan (C)

ke : konstanta dielektrik dari medium (permitivitas relatif).

k : konstanta pembanding.

harga konstanta diambil : 9. 109Nm/coulomb2

e0 : permitivitas ruang vakum (ruang hampa) : 8,9. 10-12 C2/Nm2

r : jarak antara kedua muatan listrik, satuannya meter (m)

Hukum ini menyatakan apabila terdapat dua buah titik muatan maka akan timbul gaya di antara keduanya, yang besarnya sebanding dengan perkalian nilai kedua muatan dan berbanding terbalik dengan kuadrat jarak antar keduanya. Interaksi antara benda-benda bermuatan (tidak hanya titik muatan) terjadi melalui gaya tak-kontak yang bekerja melampaui jarak separasi. Adapun hal lain yang perlu diperhatikan adalah bahwa arah gaya pada masing-masing muatan terletak selalu sepanjang garis yang menghubungkan kedua muatan tersebut. Gaya yang timbul dapat membuat kedua titik muatan saling tarik-menarik atau saling tolak-menolak, tergantung nilai dari masing-masing muatan. Muatan sejenis (bertanda sama) akan saling tolak-menolak, sedangkan muatan berbeda jenis akan saling tarik-menarik.


2. Hukum Oersted

Hans Christian Oersted adalah seorang ahli fisika dan kimia Denmark, yang dipengaruhi pemikiran Immanuel Kant. Pada tahun 1820, Oersted menemukan hubungan antara listrik dan magnetisme dalam eksperimen yang sangat sederhana. Ia menunjukkan bahwa kawat yang dialiri arus listrik dapat menolak jarum magnet kompas. Susunan percobaan Oersted tersusun seperti gambar dibawah ini.


Gambar 3.1 Percobaan Oersted

Kawat berarus akan menimbulkan jarum pada kompas bergerak. Kesimpulan yang dapat diambil adalah Dalam kawat penghantar yang dilewati arus listrik disekitarnya akan timbul garis gaya magnet. Seperti halnya bumi yang memiliki medan magnet, khasiat jarum kompas sudah sangat terkenal.


Gambar 3.2 Medan di Sekitar Kawat Berarus

Disekitar medan magnet permanen atau kawat penghantar berarus merupakan daerah medan magnet. Vektor dalam medan magnet tersebut dilambangkan dengan B atau disebut dengan induksi medan magnet. Dalam SI, satuan induksi magnet B adalah Tesla.
READ MORE - Pengantar Listrik
Free Template Blogger collection template Hot Deals SEO

Generator Listrik Arus Bolak-Balik



  1. Pendahuluan

Listrik sudah menjadi bagian yang penting bagi kehidupan manusia saat ini. Arus listrik dimanfaatkan sebagai sumber energi untuk menghidupkan berbagai macam alat-alat lisrik. Arus listrik didapatkan dari proses konversi sumber energi lainya ( energi panas, energi gerak, dll) menjadi energi listrik.

Generator merupakan sebuah alat yang mampu menghasilkan arus listrik. salah satu jenis generator adalah generator arus bolak balik yang akan dibahas saat ini. Generator arus bolak-balik berfungsi mengubah tenaga mekanis menjadi

tenaga listrik arus bolak-balik. Generator Arus Bolak-balik sering disebut juga sebagai alternator atau generator AC (alternating current) atau juga generator singkron. Alat ini sering dimanfaatkan di industri untuk mengerakkan beberapa mesin yang menggunakan arus listrik sebagai sumber penggerak.

Generator arus bolak-balik dibagi menjadi dua jenis, yaitu:

a. Generator arus bolak-balik 1 fasa

b. Generator arus bolak-balik 3 fasa


Gambar generator


  1. Prinsip Kerja Generator

Prinsip dasar generator arus bolak-balik menggunakan hukum Faraday yang menyatakan jika sebatang penghantar berada pada medan magnet yang

berubah-ubah, maka pada penghantar tersebut akan terbentuk gaya gerak

listrik.

Besar tegangan generator bergantung pada :

1. Kecepatan putaran (N)

2. Jumlah kawat pada kumparan yang memotong fluk (Z)

3. Banyaknya fluk magnet yang dibangkitkan oleh medan magnet (f)


2. Konstruksi Generator

Generator arus bolak-balik ini terdiri dari dua bagian utama, yaitu
  1. Stator, merupakan bagian diam dari generator yang mengeluarkan tegangan bolakbalik
  2. rotor, merupakan bagian bergerak yang menghasilkan medan magnit yang menginduksikan ke stator.

Stator terdiri dari badan generator yang terbuat dari baja yang berfungsi melindungi bagian dalam generator, kotak terminal dan name plate pada generator. Inti Stator yang terbuat dari bahan ferromagnetik yang berlapis-lapis dan terdapat alur-alur tempat meletakkan lilitan stator. Lilitan stator yang merupakan tempat untuk menghasilkan tegangan. Sedangkan, rotor berbentuk kutub sepatu (salient) atau kutub dengan celah udara sama rata (rotor silinder). Konstruksi dari generator sinkron dapat dilihat pada gambar berikut ini.


3. Jumlah Kutub pada Generator

Jumlah kutub generator arus bolak-balik tergantung dari kecepatan rotor dan frekuensi dari ggl yang dibangkitkan. Hubungan tersebut dapat ditentukan dengan persamaan berikut ini.


Keterangan:

f = frekuensi tegangan (Hz)

p = jumlah kutub pada rotor

n = kecepatan rotor (rpm)
READ MORE - Generator Listrik Arus Bolak-Balik
Free Template Blogger collection template Hot Deals SEO

Pergeseran Wien Radiasi Benda Hitam



Jika suatu benda padat dipanaskan maka benda itu akan memancarkan radiasi kalor. Pada suhu normal, kita tidak menyadari radiasi elektromagnetik ini karena intensitasnya rendah. Pada suhu lebih tinggi ada cukup radiasi inframerah yang tidak dapat kita lihat tetapi dapat kita rasakan panasnya jika kita mendekat ke benda tersebut.

Pada suhu yang lebih tinggi (dalm orde 1000 K ) benda mulai berpijar merah, seperti besi dipanaskan. Pada suhu diatas 2000 K benda pijar kuning atau keputih-putihhan, seperti besi berpijar putih atau pijar putih dari filament lampu pijar.


Bila suhu benda terus ditingkatkan, intensitas relative dari spectrum cahaya yang dipancarkan berubah. Ini menyebabkan pergeseran dalam warna-warna spectrum yang diamati, yang dapat digunakan untuk menaksir suhu suatu benda seperti pada gambar :


Grafik Pergeseran Wien

Gambar diatas menunjukkan grafik antara intensitas radiasi yang dipancarkan oleh suatu benda hitam terhadap panjang gelombang (grafik I – l ) pada berbagai suhu. Total energi kalor radiasi yang dipancarkan adalah sebanding dengan luas di bawag grafik. Tampak bahwa total energi kalor radiasi radiasi meningkat dengan meningkatnya suhu ( menurut hokum Stefan- Bolztman. Energi kalor sebanding dengan pangkat empat suhu mutlak.

Radiasi kalor muncul sebanding suatau spectra kontinu, bukan spectra diskret seperti garis-garis terang yang dilihat dalam spectra nyala api. Atau garis-garis gelap yang dapat dilihat dalam cahaya matahari (garis Fraunhofer) (Spektra adalah bentuk tunggal spectrum) Sebagai gantinya, semua panjang gelombang hadir dalam distribusi energi kalor yang luas ini. Jika suhu bendahitam meningkat, panjang gelombang untuk intensitas maksimum (lm) bergeser ke nilai panjang gelombang yang lebih pendek

Pengukuran spectra benda hitam menunjukkan bahwa panjang gelombang untuyk intensitas maksimum (lm) berkurang dengan meningkatnya suhu, seperti pada persamaan berikut :

λm = panjang gelombang dengan intensitas maksimum (m)

T = suhu mutlak benda hitam (K)

C = tetapan pergeseran Wien = 2,90 x 10-3 m K

READ MORE - Pergeseran Wien Radiasi Benda Hitam
Free Template Blogger collection template Hot Deals SEO

Cincin Newton



Fenomena Cincin Newton, dinamai dari Isac Newton, adalah interferensi warna yang diakibatkan oleh refleksi cahaya antara dua permukaan – permukaan bulat yaitu permukaan bulat Lensa Plan Konveks dan Permukaan bulat Kaca Plan Paralel.

Interferensi terjadi pada selaput tipis udara, disekitar lensa plan konveks (cembung) dan kaca plan-paralel.Hasil interferensi berupa pola lingkaran2/ Cincin Newton. Seperti pada gambar berikut :

Berkas sinar monokromo, jatuh pada lensa plan konveks diteruskan dan melewati selaput udara tipis di bawah lensa diatasnya kaca plan paralel.

Berkas sinar diteruskan ke kaca plan paralel. Pada selaput udara tipis terjadi peristiwa interferensi, dengan pola lingkaran-lingkaran gelap dan terang seperti cincin.

Hasil interferensi pada gambar berikut :

Pola interferensi yang terjadi pada lapisan selaput tipis udara yang ada dibawah lensa, diatas kaca secara matematika dirumuskan sbb :

Interferensi Maksimum/lingkaran terang

Interferensi Minimum/Lingkaran gelap :

Keterangan :

n = indeks bias udara = 1

rt = jari-jari lingkaran terang/gelap ke m.

m=orde interferensi (1,2,3,…dst)
l=panjang gelombang cahaya (meter)
R = jari-jari lengkungan Lensa Plan Konveks
READ MORE - Cincin Newton
Free Template Blogger collection template Hot Deals SEO
Buat temen-temen yang mungkin kesulitan dan ingin bertanya masalah pekerjaan rumah atau tugas nya, kita bisa SHARE disini :):) sebisa mungkin saya akan membantu :) silahkan Chat with me di Yahoo Messanger :):) Jangan sungkan ya, saya gak gigit koq :):)

Kontributor

Pengikut